CHEM 100 Principles Of Chemistry

Simon J. Garrett

Department of Chemistry & Biochemistry California State University, Northridge Northridge, CA 91330

0.1 Chemistry And Public Perception

Chemistry And Public Perception

- Persistent pesticides (like DDT) create major ecological concerns
- Leaded gasoline causes mental retardation in children
- Petrochemical spills endanger wildlife
- Chemical manufacturing industries may have serious accidents (like Union Carbide plant in Bhopal, India)
- Mercury from coal burning contaminates fish
- Volatile chemicals create photochemical smog
- Pollution created by chemical releases endanger human health

Chemistry And Public Perception

Chemistry And Public Perception

- Alchemists and artisans created metals from metal ores ~5000-3000 years ago
- The first batteries were created about 200 years ago
- Chemists created the first synthetic plastics (polymers) ~180 years ago
- Inorganic fertilizers greatly improved crop yields starting ~150 years ago
- Aspirin was synthesized ~110 years ago
- Our understanding of what destroyed atmospheric ozone occurred ~30 years ago

0.2 Why Is Chemistry So Important?

0.3 Why Is Chemistry So Difficult?

1. Memorization

- Important components must be committed to memory
- 2. Concepts
 - Some material is not easy to understand (reading or comprehension skills) or describe (writing skills)

3. Mathematics

-Basic algebra is required to understand the full power of chemistry

4. Problem solving

- -Using knowledge and reasoning to tackle problems never seen
- 5. Manual dexterity and observation
 - -Observation skills and hand-eye coordination in laboratory
 - Each one takes practice and patience to acquire

0.4 What Is This Class About?

- An introduction to the ideas, methods and calculations of chemistry:
 - 1. Doing Science
 - 2. Measurements and Problem Solving
 - 3. Matter and Energy
 - 4. Atoms and Elements
 - 5. Molecules and Compounds
 - 6. Chemical Composition
 - 7. Writing Chemical Reactions
 - 8. Quantities in Chemical Reactions
 - 9. Solution Composition
 - 10. Atomic Structure

0.5 Making Your Schedule Work¹

- In order to pass this class you must develop good study habits
- 1. Study at your best time of day
- 2. Study difficult or less enjoyable subjects first
- 3. Use one place set up for studying
- 4. Avoid all distractions
- 5. Use waiting time to study
- 6. Form a regular weekly study group
- 7. Take school seriously

¹http://www.ucc.vt.edu/lynch/TimeManagement.htm

0.6 Your Study Habits

- You must:
- 1. Know how to study
- 2. Have an appropriate academic background
- 3. Know how to read, listen and understand
- 4. Be **self-directed** know how to determine which material to study
- 5. Be **self-motivated** do you want to do well in this class?
- 6. Be **self-disciplined** continue to study until you learn the material

0.7 Your Professor's Expectations

- Your professor expects you to perform well in this class and you will if you:
- 1. Come to every class, actively participate and pay attention
- 2. Make good lecture notes
- 3. Spend at least as twice as much time studying outside class as in class
 - Study 3-5 times a week on regular days
 - Use the time to read <u>and understand</u> the text, reread lecture notes, try as many sample problems as you can find
- 4. Seek help early if you have problems
- 5. Be positive!

0.8 Making Good Lecture Notes

20

Representing Quantitative Information -Tricky - be careful **Equations** • If we do an experiment Temperature Pressure where we purposely vary (K) (atm) the temperature, we are 290 1.06 changing the independent variable 295 1.08 · The pressure changes in 1.10 300 response and so is called the dependent 1.12 305 variable 310 1.14 We can also show this data as a graph Ask prof. later! Keywords in bold - must know

- Make notes on every slide!
- Listen for key terms, analogies or explanations

	1 S20 08/13/13
	• independent variable (i.v.) is the
	thing under control 🗸
	 dependent variable changes
	when the i.v. is varied 🗸
	 Temperature is in strange units? OK
	• Pressure <u>increases</u> as temp.
	increases - this is expected for
	directly proportional 🗸
	 Prof. told a story about a can of
	soup exploding in a microwave
	oven because pressure got too big
	as soup got hot!
	• How do I know which is i.v.? Will
	be told in exam guestion; always
	on x axis on graph