CHEM 100 Principles Of Chemistry

Chapter 3 - Properties of Matter: Opposites Attract

3.1 Properties of Matter: Opposites Attract

- Matter occupies space and has mass
- Matter has both chemical and physical properties
- Chemical properties are those that involve a substance turning into a different substance
 - Flammability
 - Reactivity with acids
- Physical properties are inherent to the substance and do not involve a change to a different substance
 - Density
 - Color
 - Boiling and melting points
 - Electrical conductivity

Pure Substances and Mixtures

- Matter is divided into two basic categories:
- 1. **Pure substances** have a fixed composition and specific properties
 - Aluminum only aluminum
 - Salt only sodium and chlorine in fixed ratio
 - Water only hydrogen and oxygen in fixed ratio
- 2. **Mixtures** may have a variable composition and properties reflect those of their components
 - Gunpowder variable amounts of sulfur, saltpeter and charcoal
 - Saltwater variable amounts of salt and water

Pure Substances - Elements and Compounds

- Pure substances can be divided into two categories:
- Elements are the simplest building blocks of matter
 - -There are 118 known
 - They have a unique composition and properties
 - Each has a name and symbol
- Compounds contain two or more different elements chemically combined
 - They are formed by chemical reactions
 - Their properties are different

Aluminum	AI	Gold*	Au	Phosphorus	P	Memoriz
Argon	Ar	Helium	He	Platinum	Pt	<u>e</u> these
Arsenic	As	Hydrogen	н	Potassium*	К	41
Barium	Ba	Iodine	1	Rubidium	Rb	common chemica
Boron	В	Iron*	Fe	Silicon	Si	element
Bromine	Br	Lead*	Pb	Silver*	Ag	names
Cadmium	Cd	Lithium	Li	Sodium*	Na	and
Calcium	Ca	Magnesium	Mg	Strontium	Sr	symbol
Carbon	С	Manganese	Mn	Sulfur	S	(*Anoiont
Chlorine	CI	Mercury*	Hg	Tin*	Sn	element
Chromium	Cr	Neon	Ne	Titanium	Ti	with
Cobalt	Со	Nickel	Ni	Uranium	U	symbol
Copper*	Cu	Nitrogen	N	Zinc	Zn	from Lati
Fluorine	F	Oxygen	0			name
8	-			• • • • • • • • • • • • • • • • • • • •		

Test Yourself: Categorizing Matter

Q Are the following things matter, elements, compounds, pure substances and/or mixtures?

- Iron
 - -Matter, element, pure substance
- Lemonade
 - -Matter, mixture
- Sodium chloride (salt)
 - -Matter, compound, pure substance
- Mercury
 - -Matter, element, pure substance
- Air
 - -Matter, mixture

Everything with mass and volume is matter

Elements and compounds are pure substances

Mixtures are not pure substances

3.2 How Matter Changes - Chemical Change

- The smallest part of an element is an atom
- Chemical reactions or chemical changes produce new substances by rearranging the way the atoms are connected together
- Reactants are starting materials
- **Products** are ending materials
 - Products usually have very different properties than reactants
- Rusting, tarnishing and burning are chemical reactions

How Matter Changes - Physical Change

- Physical changes <u>do not</u> produce new substances although the appearance may change
- Ice, water and steam are <u>all the</u> <u>same substance</u>
 - They can be converted from one form to another without chemical reaction
- Dissolving salt in water is a physical change because saltwater has properties like the starting materials
 - Saltwater can be separated simply by boiling

Chemical or Physical Change?

- Chemical changes are often accompanied by heat, light, gas production, color changes, products with different properties
- Physical changes are often achieved by changing temperature or pressure
- Chemical changes produce new substances; physical changes do not

3.3 Mixtures

- Mixtures have
 variable composition
- Concrete is a mixture of stones, cement and sand
- The proportions of each component are not fixed
- The properties of the mixture vary with a variation in content

Homogeneous and Heterogeneous Mixtures

- A mixture with a uniform composition throughout is called a homogeneous mixture
- To the unaided eye, it looks the same everywhere
 - Examples include milk, paint, saltwater, metal alloys
- A mixture with a non-uniform composition throughout is called a heterogeneous mixture

Heterogeneous Mixtures and Phases

- Heterogeneous mixtures have distinct phases
- A phase is a portion of a mixture with a specific composition
- Phases may or may not have a different physical state like solid,

Test Yourself: Mixtures

Q Are the following homogeneous or heterogeneous mixtures and how many phases are present?

- Butter
 - -Homogeneous mixture, one phase
- Ice water
 - -Heterogeneous mixture, two phases
- Air
 - -Homogeneous mixture, one phase
- Toast with butter and jelly
 - -Heterogeneous mixture, three phases

Homogeneous mixtures are <u>always</u> one phase

Classification of Matter

All matter fits into one of these four categories

3.5 Atomic Structure

- Electric charge is a property of matter
- It may build up on an object as static electricity
 - The shock when touching a metal door handle in winter
- It may move from one place to another as electrical current
 - Lightning or charge flowing through a light bulb
- Charge comes in positive

Electric Charges and Coulomb's Law

- Opposite varieties of electric charge attract
- The same varieties of electric charge repel
- The electrostatic force F between two charges is given by Coulomb's law

where F is force, k is a constant, q_1 and q_2 are the two charges and r is the distance between the charges

Electric Charge

 Coulomb's law indicates that the force between the charges increases as q1 and q2 increase and as r decreases

Charles-Augustin de Coulomb (1736-1806)

How Big Are Atoms?

 Atoms are the building blocks of the chemical elements

Atomic Structure

- Atoms are made of smaller building blocks called subatomic particles
- 1. The electron has a negative charge and very little mass
- 2. The proton has the same charge as the electron but is positive and has 1,800 times more mass than the electron
- 3. The **neutron** has no charge and nearly the same mass as the proton
 - All atoms are made of electrons and protons and most contain neutrons

Subatomic Particles

The SI unit of charge is the coulomb (C)

Particle (symbol)	Location in atom	Relative electric charge	Mass (g)		
Proton (p)	Inside the nucleus	+1	1.673x10 ⁻²⁴		
Neutron (n)	Inside the nucleus	0	1.675x10 ⁻²⁴		
Electron (e-)	Outside the nucleus	-1	9.109x10 ⁻²⁸		

The actual charge on the electron is -1.602x10⁻¹⁹ C

Atomic Structure

Atoms and Charges

- Protons and neutrons are held very tightly in the nucleus
 - They cannot be changed in a chemical reaction
- Electrons are held much more weakly
 - They are not drawn to the nucleus because they spin around the nucleus (simplified explanation)
- When charge flows, it is electrons that move
- When something charges up positively it is because electrons have been removed
- When something charges up negatively it is because electrons have been added

3.6 Chemical Elements and Atomic Number Z

- Each element is different in terms of its number of subatomic particles
- The atomic number Z is the <u>number of protons</u> and it defines the chemical element
- Helium (Z = 2) has 2 protons
- Carbon (Z = 6) has 6 protons
- Gold (Z = 79) has 79

Mass Number A

- Some atoms of the same element have different numbers of neutrons (isotopes)
- The mass number
 A is the sum of the number of protons
 (Z) and neutrons
 (N)
- N = A Z
- We use a

Q Complete the following table:

	Z	A	number of protons	number of electrons	number of neutrons
¹⁶ 80	8	16	8	8	8
²³ Na	11	23	11	11	12
⁵² 24 Cr	24	52	24	24	28

The Periodic Table

- In 1869 Dmitri Mendeleev proposed arranging the chemical elements into a table
- The elements are ordered by increasing atomic number
 - -Hydrogen (Z = 1) is top left; ununoctium (Z = 118) is bottom right
 - He organized it so elements with similar properties are grouped
 - He left gaps for elements not discovered in 1869
- The table is called the periodic table

Dmitri Mendeleev (1834-1907)

	1A																	8A
1	1 H	2A											ЗA	4A	5A	6A	7A	² He
2	з Li	4 Be		Me	tals	Me	etallo	oids	Nor	n-me	tals		5 B	6 C	7 N	8 0	9 F	¹⁰ Ne
3	11 Na	12 Mg	ЗB	4B	5B	6B	7B	8B	8B	8B	1B	2B	13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	³² Ge	33 As	³⁴ Se	35 Br	³⁶ Kr
5	37 Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	⁴³ Тс	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	⁵⁶ Ba		72 Hf	73 Ta	74 W	75 Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	79 Au	⁸⁰ Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra		¹⁰⁴ Rf	105 Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	111 Rg	¹¹² Cn	¹¹³ Uut	¹¹⁴ Uuq	115 Uup	116 Uuh	¹¹⁷ Uus	¹¹⁸ Uuo

6	57	58	⁵⁹	60	⁶¹	⁶²	63	64	⁶⁵	⁶⁶	67	⁶⁸	⁶⁹	⁷⁰	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
7	⁸⁹	90	91	92	93	⁹⁴	95	96	97	98	99	100	¹⁰¹	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The Periodic Table

 Metals (like copper) are shiny, good conductors of heat and electricity, dense and malleable

- All are solids except mercury (Hg)

 Non-metals (like oxygen) do not conduct heat or electricity and have low melting temperatures and densities

- Many are gases

- Metalloids (like silicon) exist in different forms, one of which is like a metal and one of which is like a non-metal
 - Many are used to make semiconductors

30

- Elements in the same group tend to have similar chemical properties
- Some groups have special names

Group	Name
1A (except H)	Alkali metals
2A	Alkaline earth metals
7A	Halogens
8A	Noble gases

- For most elements, the atom is the smallest unit
- For some elements, a pair of joined atoms is the smallest unit

 $H_2,\,N_2,\,O_2,\,F_2,\,CI_2,\,Br_2,\,I_2$

- The subscript (2) indicates the atoms are joined

- These elements are <u>always</u> found in nature as **diatomic molecules** and should be written as such
- A molecule is two or more atoms joined together

An oxygen molecule O₂

3.7 Gaining and Losing Electrons

- Atoms may gain or lose whole electrons to form ions
- Atoms that lose electrons become positively charged and are called cations; they tend to be metals
- Sodium atoms may lose an electron to become a

Na $(11p, 11e^{-}) \rightarrow Na^{+} (11p, 10e^{-}) + e^{-}$

Gaining and Losing Electrons

- Atoms that gain electrons become negatively charged and are called anions; they tend to be non-metals
- Chlorine atoms may gain an electron to become a

 $CI (17 \text{ p}, 17 \text{ e}^{-}) + \text{e}^{-} \rightarrow CI^{-} (17 \text{ p}, 18 \text{ e}^{-})$ S (16 p, 16 e^{-}) + 2 e^{-} \rightarrow S²⁻ (16 p, 18 e^{-}) Sulfur atom Sulfide ion

• Try these:

Q How many electrons are there in N³⁻? (10) Q How many electrons are there in Be²⁺? (2)

Naming lons

- What are the rules for naming anions and cations?
- All monatomic cations are named the same as the element plus "ion"
 Na+ is the sodium ion Mg²⁺ is the magnesium ion
- All monatomic anions are named with the first part of the element name with the suffix "-ide" plus "ion"
 - Cl⁻ (<u>chlor</u>ine + -ide + ion) is the <u>chlor</u>ide ion
 - O^{2-} (oxygen + -ide + ion) is the oxide ion
 - N³⁻ (nitrogen + -ide + ion) is the nitride ion
Common Stems of Element Names

- Many element stems can be guessed by dropping the last syllable of the element name
- Hydrogen = hydr
- Carbon = carb
- Oxygen = ox
- Fluorine = fluor
- Silicon = **silic**
- Phosphorus = phosph
- Sulfur = **sulf**
- Chlorine = chlor

Q Name the following monatomic ions:

lon	Anion or cation?	Name
H+	Cation	Hydrogen ion
Ca ²⁺	Cation	Calcium ion
P ³⁻	Anion	Phosphide ion
F-	Anion	Fluoride ion
Li+	Cation	Lithium ion
S ²⁻	Anion	Sulfide ion

Predicting the Charges on Monatomic lons

- How can we predict the charges on monatomic ions?
- The A group metals tend to lose electrons to form cations with a charge equal to the group number
 The potassium ion comes from potassium (K) which is in group 1A so it is written K+
- The non-metals tend to gain electrons to form anions with a charge equal to the group number minus 8

The bromine ion comes from bromine (Br) which is in group 7A (7 - 8 = -1) so it is written Br^{-}

• An important exception is H+

Q Write the symbols for the following monatomic ions:

Name	Anion or cation?	Group?	Charge?	Symbol
Barium ion	Cation	2A	+2	Ba ²⁺
Lithium ion	Cation	1A	+1	Li+
Hydrogen ion	Cation	1A	+1	H+
lodide ion	Anion	7A	-1	 -
Sulfide ion	Anion	6A	-2	S ²⁻

Transition Ion Charges

- Unfortunately, the previous <u>guides don't apply</u> for determining charge for B group elements
 - They are all metals so all tend to form cations
- Many exist in several forms
 Fe²⁺ and Fe³⁺
- They are named using <u>Roman numerals</u>
 Fe²⁺ is known as the iron (II) ion
 Fe³⁺ is known as the iron (III) ion
- Try these:

Q Name Ti²⁺, Ti³⁺ and Ti⁴⁺

Name	Symbol
Silver	Ag+

Name	Symbol
Zinc	Zn ²⁺
Cadmium	Cd ²⁺
Nickel	Ni ²⁺
Manganese	Mn ²⁺
Tin	Sn ²⁺
Lead	Pb ²⁺

Name	Symbol
Copper (I)	Cu+
Copper (II)	Cu ²⁺
Mercury (I)	Hg ₂ ²⁺
Mercury (II)	Hg ²⁺
Iron (II)	Fe ²⁺
Iron (III)	Fe ³⁺
Cobalt (II)	Co ²⁺
Cobalt (III)	Co ³⁺
Chromium (II)	Cr ²⁺
Chromium (III)	Cr ³⁺

3.8 Chemical Compounds

- A compound is two or more different elements joined together
 - They are formed by chemical reactions
 - They are pure substances so they have a fixed composition
- The law of constant composition states all samples of a specific compound contain the same proportions of their constituent elements
- This means a shorthand can be written for compounds
- The shorthand is called the chemical formula and it indicates the constituents and their proportions
- The compound has different properties than its

Chemical Formulas

- The chemical formula for carbon dioxide is CO_2
- The constituents are carbon (C) and oxygen (O) only
- The subscript (2) indicates the compound contains exactly 2 atoms of O and 1 atom of C

Chemical Compounds

- Chemical compounds come in two basic types:
- 1. **Ionic compounds** are 3-D arrangements of cations and anions held together by electrostatic forces The forces are known as **ionic bonds**
- 2. **Molecular compounds** are separate molecules formed when two nonmetals are joined by **covalent bonds**

The covalent bond is an electrostatic attraction between two nuclei and a cloud of electrons between them

Ionic Compounds

- Ionic compounds are formed by a metal and a nonmetal
 - Usually the cation is formed by the metal and the anion formed by the non-metal
- Ionic compounds are uncharged
 - -The **positive charges** and **negative charges**

Table salt Sodium chloride NaCl

Ionic Compounds and Formula Units

- Since there may be a large number of ions in a sample, we use formula unit, the simplest integer ratio of the constituents of an ionic compound
- An ionic compound is named "cation anion"

NaCl is sodium chloride MgF₂ is magnesium fluoride Ca₃P₂ is calcium phosphide PbS is lead sulfide

Ionic Compounds and Formula Units

- How is the formula unit determined?
- The general formula unit is cation_xanion_y
- x and y are chosen so that the compound is <u>uncharged</u>
- Q What is the formula unit of the compound formed from the reaction of calcium and phosphorus?

A The formula unit is Ca₃P₂

Test Yourself: Formula Units

Q Write the formula units for following compounds:

Name	Cation?	Anion?	Formula unit
Lithium fluoride	Li+	F-	LiF
Magnesium oxide	Mg ²⁺	O ²⁻	MgO
Calcium bromide	Ca ²⁺	Br-	CaBr ₂
Sodium sulfide	Na+	S ²⁻	Na ₂ S
Aluminum oxide	Al ³⁺	O ²⁻	Al ₂ O ₃

Polyatomic lons

- There are many instances of polyatomic ions in chemistry
- A polyatomic ion is a charged group of atoms
 - NH_{4^+} is the **ammonium ion**
 - CO₃²⁻ is the carbonate ion
 - $-PO_4^{3-}$ is the **phosphate ion**
- The procedure for naming is the same as before

 "Cation anion"
- Q What is the name for the ionic compound formed from the sodium and carbonate ions?
- A Sodium carbonate

Name	Symbol	Name	Symbol
Ammonium	NH ₄ +	Chlorite	CIO ₂ -
		Chlorate	CIO ₃ -
		Perchlorate	CIO ₄ -
Name	Symbol	Hydrogen carbonate	HCO ₃ -
Hydroxide	OH-	Hydrogen sulfite	HSO3 ⁻
Nitrite	NO ₂ -	Hydrogen sulfate	HSO4 ⁻
Nitrate	NO ₃ -	Permanganate	MnO₄⁻
Acetate	$C_2H_3O_2^{-1}$		
Cyanide	CN-		
Hypochlorite	CIO-	Memorize these!	

Name Symb	
Oxide*	O ²⁻
Peroxide	O ₂ ²⁻
Sulfide*	S ²⁻
Sulfite	SO ₃ ²⁻
Sulfate SO ₄ ²	
Carbonate CO ₃ ²	
Oxalate C ₂ O ₄ ²	
Silicate SiO ₃ ²	
Chromate CrO ₄ 2	
Dichromate Cr ₂ O ₇ ²	

Name	Symbol
Thiosulfate	S ₂ O ₃ ²⁻
Hydrogen phosphate	HPO ₄ ²⁻

Name	Symbol
Phosphide*	P ³⁻
Phosphate	PO4 ³⁻

* Not polyatomic ions

Memorize these!

Polyatomic Ions and Formula Units

- The procedure for finding the formula unit is the same as before except the polyatomic ion is enclosed in parentheses if more than one is needed
- Q What is the formula unit for sodium carbonate?
- A The two ions are Na⁺ and CO_3^{2-}

Sodium carbonate Na₂CO₃

A Na₂CO₃

Polyatomic Ions and Formula Units

Q What is the formula unit for aluminum carbonate? A The two ions are AI^{3+} and CO_{3}^{2-}

A $AI_2CO_{33}?$

But this is confusing so the correct answer makes use of parentheses - $AI_2(CO_3)_3$

- Q How many atoms of each kind are there in one formula unit of Al₂(CO₃)₃
- A 2 AI atoms, 3 C atoms and 9 O atoms

3.10 Molecular Compounds

- Molecular compounds are molecules composed of two or more different atoms joined by covalent bonds
- Molecular compounds are composed of <u>non-metal</u> <u>atoms</u>
- The chemical formula indicates how many atoms of each element are present (not the simplest ratio)
 - -CH₄ 1 carbon atom and 4 hydrogen atoms
 - $-N_2H_4$ 2 nitrogen atoms and 4 hydrogen atoms
 - $-C_4H_{10}$ 4 carbon atoms and 10 hydrogen atoms

Visualizing Molecular Compounds

 To help visualize molecular compounds, chemists use either ball-and-stick or space-filling models

Visualizing Molecular Compounds

- Models help chemists understand how even complex molecules work
- Hemoglobin is the molecule that picks up and transports oxygen (O₂) around the blood
- Its chemical formula is $C_{738}H_{1166}N_{812}O_{203}S_2Fe!$

Properties of Ionic Compounds and Molecular Compounds

Ionic Compounds	Molecular Compounds
Metal and non-metal with ionic bonding	Different non-metals with covalent bonding
3-D packing of cations and anions	Discrete molecules
Chemical formula (formula unit) indicates simplest ratio of atoms	Chemical formula indicates exact number of atoms
Usually hard solids	Small molecules may be gases or liquids, large molecules are solids
Do not conduct electricity except when dissolved in water	Do not conduct electricity even when dissolved in water (except acids)
Examples: NaCl, TiO2, NaOH	Examples: H ₂ O, CO ₂ , CH ₄ , HCI

Naming Molecular Compounds

- Binary (two different atom) molecular compounds have the basic chemical formula A_xB_y
 - Unlike ionic compounds, there are no charges to guide how to choose values for x and y
- We have to rely on the name to tell us x and y
- 1. Number prefix for A element
- 2. A element name
- 3. Number prefix for B element
- 4. Stem of B element name
- 5. -ide suffix

Naming Binary Molecular Compounds

- The number prefix is given by a Latin or Greek word
- To make the name more readable:
- 1. Drop mono for the first element
- 2. Drop <u>all prefixes</u> if the first element is H
- 3. Drop the last <u>o</u> or <u>a</u> of the prefix prior to a vowel

Prefix	Number
Mono	1
Di	2
Tri	3
Tetra	4
Penta	5
Hexa	6
Hepta	7
Octa	8
Nona	9
Deca	10

Naming Binary Molecular Compounds

- Q Name the compound SF₆
- A Following the 5 steps:
- 1. There is 1 A atom = mono
- 2. The A atom name = **sulfur**
- 3. There are 6 B atoms = **hexa**
- 4. The B atom name is fluorine and stem is fluor
- 5. Add **-ide**

Monosulfur hexafluoride = **Sulfur hexafluoride**

Naming Binary Molecular Compounds

- Q Name the compound N_2O_4
- A Following the 5 steps:
- 1. There are 2 A atoms = di
- 2. The A atom name = **nitrogen**
- 3. There are 4 B atoms = tetra
- 4. The B atom name is oxygen and stem is **ox**
- 5. Add **-ide**

Dinitrogen tetraoxide = **Dinitrogen tetroxide**

Q Name the following binary compounds:

Chemical Formula	Name
NO ₂	Nitrogen dioxide
N ₂ O	Dinitrogen monoxide
CS ₂	Carbon disulfide
PCI ₅	Phosphorus pentachloride
N_2H_4	Dinitrogen tetrahydride
P ₂ O ₅	Diphosphorus pentoxide

Binary Acids

- Binary acids are molecular compounds with the general formula H_xA(aq)
 - A is a non-metal
 - (aq) means **aqueous** (dissolved in water)
- Acids produce H+(aq) when dissolved

Hydrochloric acid (HCI) is the primary stomach acid

Naming Binary Acids

- Binary acids are named in 4 steps:
- 1. Hydro- prefix
- 2. Stem of non-metal A element
- 3. -ic suffix
- 4. Acid
- Q Name the acid HF
- 1. Prefix = Hydro-
- 2. Stem = Fluor
- 3. Suffix = **-ic**

4. Acid

A Hydrofluoric acid

Test Yourself: Binary Acids

Q Name the following binary acids:

Chemical Formula	Name
HI	Hydroiodic acid
HBr	Hydrobromic acid
H ₂ S	Hydrosulfuric acid (not hydrosulfic acid)

Oxoacids

- Oxoacids are molecular compounds with the general formula H_xAO_y(aq)
 - A is a non-metal
 - At least one H atom and one O atom
- How are they named?

Carbonic acid (H₂CO₃) is present in all carbonated beverages

Naming Oxoacids

- Oxoacids are named according to the anion formed when the H+ ions leave
- HNO₃ loses H⁺ to form NO₃⁻
- The nitrate polyatomic anion is formed
- The acid is named in 4 steps:
- The stem of the non-metal AO_y anion
 If the anion ends in -ate, replace with -ic
 If the anion end in -ite, replace with -ous
 Acid

Naming Oxoacids

- Q What is the name of the acid HNO₃?
- 1. The anion formed is NO_{3⁻} (**nitr<u>ate</u>**)
- 2. The stem is nitr
- 3. -ate changes to -ic
- 4. Add the word acid
- A The acid is **nitric acid**

- Q What is the name of the acid HNO₂?
- 1. The anion formed is NO_{2⁻} (**nitr<u>ite</u>**)
- 2. The stem is **nitr**
- 3. -ite changes to -ous
- 4. Add the word acid
- A The acid is **nitrous acid**

Naming Summary

- You <u>must</u> identify whether a substance is ionic or molecular before trying to name it
- 1. Ionic compounds contain a metal and non-metal
 - -Named cation anion
 - Chemical formula is determined by charges
- 2. Molecular compounds contain only non-metals
 - Binary compounds are named number prefix + first element
 name + number prefix + second element stem + -ide
 - Binary acids are named hydro- + stem of non-metal + -ic + acid
 - -Oxoacids are anion name (ate to ic, ite to ous) + acid

Q Name the following compounds:

Chemical Formula	Type?	Name
MgO	Ionic	Magnesium oxide
H_2SO_3	Oxoacid	Sulfurous acid
HCI	Binary acid	Hydrochloric acid
P ₂ Cl ₆	Molecular	Diphosphorus hexachloride
Fe ₂ O ₃	Ionic	Iron (III) oxide
HCIO ₄	Oxoacid	Perchloric acid

Review: Learning Objectives

- Classify materials as pure substances or mixtures (Section 3.1, 3.3; Exercises 1-5, 20, 21)
- Distinguish between chemical and physical change (Section 3.2; Exercises 6, 7, 17)
- Describe the subatomic composition of atoms & ions (Section 3.5, 3.6, 3.7; Exercises 8-11)
- Identify fundamental properties of elements (Section 3.5; Exercises 8-11)
- Distinguish between ionic and molecular compounds (Section 3.8, 3.9, 3.10; Exercises 12, 14, 18, 19, 23)
- Write chemical formulas and names for compounds (Section 3.9, 3.10; Exercises 13, 15, 16, 24, 25)