CHEM 100 Principles Of Chemistry

Chapter 4 - Chemical And Physical Changes

4.1 Energy

- Almost all physical and chemical changes involve the transfer or conversion of energy
- Kinetic energy (KE) is the energy of motion
 - The faster an object moves, the higher its KE
- Potential energy (PE) is stored energy because of position
 - Gravitational PE increases when an object is raised
 - Mechanical PE increases when a spring is stretched
 - Electrostatic PE increases when oppositely-charged particles are pulled apart
- KE is frequently converted to PE and vice versa

Energy Conversion

- At the top of the swing set arc, PE is maximum and KE is minimum
- At the middle of the swing set arc, PE is minimum and KE is maximum
- At the bottom of the hill, PE is minimum
- At the top of the hill, PE is maximum
- Mechanical work is required to convert KE to PE

Types of Energy

- Mechanical work is done by exerting a force over a distance
 - Energy is simply the capacity to do work
- Other kinds of energy commonly encountered are:

1. Radiant (light) energy

- Solar panels, photosynthesis

2. Chemical energy

- Explosions, powering a car, using a gas stove

3. Thermal (heat) energy

-Cooking on a stove, melting metal

4. Electrical energy

-Turning on a light, powering a stereo, running a vacuum cleaner

The First Law of Thermodynamics

- The first law of thermodynamics states energy is neither created nor destroyed, only converted from one form to another
- The SI unit of energy is the joule (J)
 - The human heart uses 2-3 J every second
- Other non-SI units of energy are:
- **calorie** (1 cal = 4.184 J exactly)
- Calorie (food calorie) (1 Cal =

James Joule (1819-1889)

Calories And Joules

$$19,600 \text{ Cal} \times \frac{1000 \text{ cal}}{1 \text{ Cal}} \times \frac{4.184 \text{ J}}{1 \text{ cal}} = 82 \text{ MJ}$$

- A person requires about 8.4 MJ (2000 Calories) per day
 - The Nathan's record corresponds to eating almost 10 days worth of food
- 1 lb of body fat stores about 15 MJ of energy
 - Equivalent to adding about 5.5 lbs of fat in a single meal!

Nutrition Nathan's Famous Hot Dogs World Record Serving Size: 66.0 Hor	Facts t Dogs (6,600 g)		
Amount Per Serving			
Calories 19,600 Calories fr	om Fat 11,500		
	% Daily Value		
Total Fat 1,280 g	1,965%		
Saturated Fat 490 g	2,460%		
Trans Fat (NA)			
Cholesterol 2,250 mg	750%		
Sodium 43,410 mg	1,810%		
Total Carbohydrate 1,440 g	480%		
Dietary Fiber 80 g	330%		
Sugars 0 g			
Protein 675 g	1,350%		
Vitamin A	0%		
Vitamin C	4%		
Calcium	325%		
Iron	730%		
Percentage values are based on a 2,00	0 calorie diet		
CalorieLab.com/news			

Nathan's hot dog eating contest winner 2008

4.2 Energy Changes

- When a process involves the absorption of heat, the temperature increases
- Temperature scales include the Celcius (°C), Fahrenheit (°F) and Kelvin (K)

$$t_{\circ F} = (t_{\circ C} \times \frac{9}{5}) + 32$$

 $t_{\kappa} = t_{\circ C} + 273.15$

What Is Temperature?

- Temperature is a measure of the average kinetic energy of the atoms, molecules or ions
- What happens when the temperature of a solid rises?
- Solid particles are held in place by electrostatic forces
 - Solid particles are fixed but may vibrate in place
- The particles eventually have enough energy to overcome the attractions and the solid melts
 - Liquid particles move easily but remain close together on average
- At high temperature, the KE overcomes all

Changes Of State

Low energy

Low temperature

High temperature

- A **solid** has fixed shape and volume, is not easily compressed and particles are fixed by attractions
- A liquid has fixed volume but no fixed shape, is not easily compressed and particles are held by attractions but able to move past each other
- A gas takes the volume and shape of its container, is compressible and has widely-spaced particles moving rapidly

Using Equations As Shorthand

• For any process we can write

A (Initial State) ^{Physical Change}→B (Final State)

A (Reactants) $\xrightarrow{\text{Chemical Change}} B$ (Products)

- For a chemical change the product is a new substance (element, compound or molecule)
- For a physical change the final state is <u>not</u> a new substance

A physical
change
$$H_2O(s) \rightarrow H_2O(l)$$

Many physical changes
are reversed by changing
temperature/pressure $(s) = solid$
 $(l) = liquid$
 $(g) = gaseous$
 $(aq) = aqueous$

10

Endothermic And Exothermic Processes

- When ice melts, energy must be added to overcome the attraction between the molecules
- Heat-absorbing processes are called **endothermic** processes

Heat + $H_2O(s) \rightarrow H_2O(l)$

- If we reverse the process, energy must be released
- Heat-releasing processes are called exothermic processes

 $H_2O(I) \rightarrow H_2O(s) + Heat$

Energy Level Diagrams

- Alternately, we could draw an energy level diagram
- If we add energy to ice to melt it, liquid water must contain more energy than ice <u>at the same</u> temperature

ΔE And Energy Changes

 Changes in quantities Energy E are always written [†]

 $\Delta E = E_{\text{final}} - E_{\text{initial}}$

- For an **endothermic** process, $E_{\text{final}} > E_{\text{initial}}$ so ΔE is a **positive** quantity
- For an exothermic process, E_{final} < E_{initial} so ΔE is a negative quantity

In this class you won't learn how to predict if a process is exo- or endothermic

Energy And Temperature Changes

For a single state of matter, adding heat (q) causes a temperature change (ΔT) that must depend on the mass of the object (m)

 $q \propto m \cdot \Delta T$

• Turning the proportionality into an equality

 $q = c \cdot m \cdot \Delta T$

where c is called the **specific heat** of the object

- q has units of J, m has units of g, ΔT has units of °C so c has units of J/g·°C
 - c represents the amount of heat required to raise the temperature of 1 g of the object by 1 °C

Energy And Temperature Changes

Q How much heat is released when a 105 g Cu block cools from 52 °C to 21 °C (c = $0.385 \text{ J/°C} \cdot \text{g}$)?

A The equation is

 $q = c \cdot m \cdot \Delta T$

where c = 0.385 J/°C·g, m = 105 g and $\Delta T = T_{final} - T_{initial} = 21 °C - 52 °C = -31 °C$ So $q = c \cdot m \cdot \Delta T$ Minus sign means heat released = -1.3 kJ $\begin{pmatrix} J \\ \circ C \cdot g \end{pmatrix} \times 105 \text{ g} \times (-31 °C)$ = -1.3 kJ $\begin{pmatrix} 2 \text{ significant figures} \end{pmatrix}$

Specific Heat And Temperature Changes

- A material with strong attractions between the particles will require more energy to cause the particles to vibrate
- The material will have a higher specific heat
 - Metals heat up easily
 - Water heats up less easily
 - Ice heats up more quickly than water
 - Aluminum pans heat up more quickly that the water inside

Substance	Specific Heat (J/g·°C)	
H ₂ O(I)	4.18	
H ₂ O(s)	2.05	
Al(s)	0.902	
Cu(s)	0.385	
Au(s)	0.128	
Fe(s)	0.45	

4.3 More Conservation Laws

- Antoine Lavoisier discovered that the total mass is conserved in a chemical reaction
 - 103.4 g of reactants produces 103.4 g of products
- This is called the law of conservation of mass
- Recently it has been found that there are very tiny changes in total mass when energy is released or absorbed by a chemical reaction

Antoine Lavoisier (1743-1794)

More Conservation Laws

 For an exothermic reaction, the total mass of products is very slightly less than the mass of reactants

-The mass is converted to released energy

 For an endothermic reaction, the total mass of products is very slightly greater than the mass of reactants

-The absorbed energy is converted to mass

 The law is now called the law of conservation of mass and

Albert Einstein (1879-1955)

The difference can be ignored in this class

4.4 Chemical Reactions And Chemical Equations

- Chemical equations are shorthand for providing all relevant information for a chemical or physical change
- A word equation is the first step:

Carbon solid + oxygen gas \rightarrow carbon monoxide gas

If we substitute chemical formulas for the words we make an unbalanced chemical equation

 $C(s) + O_2(g) \rightarrow CO(g)$

This equation is <u>unbalanced because it does not have</u>
 <u>the same number of atoms on each side of the arrow</u>

Balancing Chemical Equations

 To balance a chemical equation we add numbers (coefficients) <u>before</u> the chemical formulas

 $C(s) + O_2(g) \rightarrow CO(g)$

 Notice that there are two O atoms on the left but only one O atom on the right?

- Any chemical formula without a coefficient is assumed to be 1

• We can balance by adding a coefficient of $\frac{1}{2}$ before O_2

 $C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g)$

Now we have a balanced chemical equation

Balancing Chemical Equations

- In general, balanced chemical equations are written with the smallest <u>integers</u> as coefficients
- We can achieve this by multiplying all coefficients by 2

$$C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g)$$

$$x 2$$

$$2 C(s) + O_2(g) \rightarrow 2 CO(g)$$

Becomes

- Now we have a fully balanced chemical equation
- Note you <u>cannot alter the chemical formulas</u> to balance an equation, only the coefficients!

Balancing Chemical Equations

• Let's put this into pictures:

Test Yourself: Chemical Equations

Q Write a balanced chemical equation for the reaction of lithium metal and chlorine gas making lithium chloride A Word equation:

Lithium solid + chlorine gas \rightarrow lithium chloride solid

Unbalanced chemical equation:

```
Li(s) + Cl_2(g) \rightarrow LiCl(s)
```

Balanced chemical equation:

```
Li(s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl(s)
```

Fully balanced chemical equation:

 $2 \operatorname{Li}(s) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{LiCl}(s)$

Test Yourself: Chemical Equations

- Q Write a balanced chemical equation for the reaction of calcium metal and oxygen gas making calcium oxide solid
 - $2 \operatorname{Ca}(s) + O_2(g) \rightarrow 2 \operatorname{CaO}(s)$

STOP Test Yourself: Chemical Equations

Q Write a balanced chemical equation for the reaction of nitrogen gas and oxygen gas making dinitrogen tetroxide gas

 $N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)$

Test Yourself: Chemical Equations

Q Write a balanced chemical equation for the reaction of solid sulfur and oxygen gas making sulfur trioxide gas $2 S(s) + 3 O_2(g) \rightarrow 2 SO_3(g)$

STOP Test Yourself: Chemical Equations

- Q Write a balanced chemical equation for the reaction of aqueous silver nitrate and aqueous sodium chloride making silver chloride solid and aqueous sodium nitrate
 - $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

STOP Test Yourself: Chemical Equations

Q Write a balanced chemical equation for the reaction of aqueous hydrochloric acid and iron making iron (II) chloride and hydrogen

 $2 \text{ HCl}(aq) + \text{Fe}(s) \rightarrow \text{FeCl}_2(s) + \text{H}_2(g)$

4.5 Classification of Chemical Reactions

- Chemical reactions are grouped into similar types, ones that follow similar patterns
- We will look at:
- 1. Combination reactions
- 2. Decomposition reactions
- 3. Combustion reactions
- 4. Displacement reactions
 - In many cases, knowing the type of chemical reaction

Reaction of wood and oxygen - a combustion reaction

Decomposition Reactions

 In a decomposition reaction a single substance breaks down to make two or more new substances

$$AB \rightarrow A + B$$

- These are the opposite of combination reactions

• Examples include

 $CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$ 2 H₂O₂(I) \rightarrow 2 H₂O(I) + O₂(g) 6 NaHCO₃(s) \rightarrow 3 Na₂CO₃(s) + 3 H₂O(I) + 3 CO₂(g)

Again, the specific products are difficult to predict

Combination Reactions

 In a combination reaction, two or more substances react to form a single product

 $A + B \rightarrow AB$

• Examples include

$$\begin{array}{l} 2 \ H_2(g) + O_2(g) \rightarrow 2 \ H_2O(l) \\ N_2(g) + 2 \ O_2(g) \rightarrow 2 \ NO_2(g) \\ Ti(s) + O_2(g) \rightarrow TiO_2(s) \end{array}$$

 The chemical formula of molecular compound products are difficult to predict but ionic compounds are straightforward

Decomposition Reaction

- Many explosives are decomposition reactions
- The decomposition reaction for trinitrotoluene (TNT) is $2 C_7 H_5 N_3 O_6(s) \rightarrow 3 N_2(g) + 5 H_2 O(l) + 7 CO(g) + 7 C(s)$

Combustion Reactions

 In a combustion reaction a compound containing C and H (a hydrocarbon) or C,H and O only reacts with oxygen

Unbalance $C_xH_y + O_2(g) \rightarrow CO_2(g) + H_2O(I)$ $C_xH_yO_z + O_2(g) \rightarrow CO_2(g) + H_2O(I)$

- The reactants may be solids, liquids or gases
- Many combustion reactions are exothermic
- C_xH_y and C_xH_yO_z include many fuels such as natural gas (CH₄), gasoline (mostly C₈H₁₈) and sugar (C₁₂H₂₂O₁₁)

Combustion Reactions

• Examples include

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$ 2 C₈H₁₈(I) + 25 O₂(g) → 16 CO₂(g) + 18 H₂O(I)

- When balancing combustion reactions, start with C and H atoms by adding coefficients in front of CO₂(g) and H₂O(I), respectively
- Then balance O by adding coefficients in front of the O₂(g) reactant

Test Yourself: Chemical Equations

Q Write a balanced chemical equation for the combustion of sugar ($C_{12}H_{22}O_{11}$)

 $C_{12}H_{22}O_{11}(s) + 12 O_2(g) \rightarrow 12 CO_2(g) + 11 H_2O(l)$

Combustion Reactions

- Combustion reactions inside human cells produce CO₂(g) and H₂O(g) which are exhaled
- The energy released drives many biochemical reactions and keeps us warm
 - The human body releases about 100 J/s (100 Watts) at rest and 1000 J/s (1000 Watts) during a fast sprint

 In a single displacement reaction, atom A displaces atom B from compound BC to form two new substances

- Both atoms A and B must be metals, hydrogen or halogens
- Examples include

 $\begin{aligned} &\mathsf{Fe}(\mathsf{s}) + \mathsf{Cu}\mathsf{SO}_4(\mathsf{aq}) \to \mathsf{Fe}\mathsf{SO}_4(\mathsf{aq}) + \mathsf{Cu}(\mathsf{s}) \\ &\mathsf{Mg}(\mathsf{s}) + 2 \;\mathsf{HCl}(\mathsf{aq}) \to \mathsf{Mg}\mathsf{Cl}_2(\mathsf{aq}) + \mathsf{H}_2(\mathsf{g}) \\ &\mathsf{Ca}(\mathsf{s}) + 2 \;\mathsf{H}_2\mathsf{O}(\mathsf{I}) \to \mathsf{Ca}(\mathsf{OH})_2(\mathsf{aq}) + \mathsf{H}_2(\mathsf{g}) \end{aligned}$

Cu(s) + 2 AgNO₃(aq) → Cu(NO₃)₂(aq) + 2 Ag(s) \uparrow Cu²⁺ = Blue

 In a double displacement reaction, cations A and C swap places with anions B and D to form two new substances

$$AB + CD \rightarrow AD + CB$$

- Cations A and C and anions B and D may be monatomic or polyatomic
- Examples include

$$\begin{split} & \operatorname{AgNO}_3(\operatorname{aq}) + \operatorname{HCI}(\operatorname{aq}) \to \operatorname{HNO}_3(\operatorname{aq}) + \operatorname{AgCI}(\operatorname{s}) \\ & \operatorname{Na}_2\operatorname{SO}_4(\operatorname{aq}) + \operatorname{BaCI}_2(\operatorname{aq}) \to \operatorname{BaSO}_4(\operatorname{s}) + 2\operatorname{NaCI}(\operatorname{aq}) \\ & \operatorname{HCI}(\operatorname{aq}) + \operatorname{NaOH}(\operatorname{aq}) \to \operatorname{NaCI}(\operatorname{aq}) + \operatorname{H}_2\operatorname{O}(\operatorname{I}) \end{split}$$

4.6 Solubility Of Ionic Compounds

- In double displacement reactions some ionic substances produced are (aq) and some (s)
- In other words, some ionic substances are soluble in water
 - They dissolve and are shown as (aq)
- Some ionic substances are insoluble in water
 They don't dissolve and are shown as (s)
- An insoluble product formed in aqueous solution is called a precipitate

 $3 \operatorname{Cal}_2(aq) + 2 \operatorname{Li}_3 PO_4(aq) \rightarrow 6 \operatorname{Lil}(aq) + Ca_3(PO_4)_2(s)$

 Double displacement precipitation reactions are sometimes desirable because products can be separated easily by filtering

 $Pb(NO_3)_2(aq) + 2 KI(aq) \rightarrow 2 KNO_3(aq) + PbI_2(s)$

Insoluble yellow Pbl₂ forming in KNO₃(aq)

Precipitation Reactions

NaCl(aq) + AgNO₃(aq) → NaNO₃(aq) + AgCl(s) Nal(aq) + AgNO₃(aq) → NaNO₃(aq) + AgI(s) Precipitate

Solubility Of Ionic Compounds

- How do we predict whether an ionic substance will be soluble or insoluble?
- The solubility rules list the solubility of major types of cations and anions
 - -For example, all nitrates are soluble in water
 - But there are many exceptions and the list is long
- 2. Another approach relies on gauging the strength of the attraction between the oppositely-charged ions
 - When an ionic compound dissolves, the ions are separated and free to move in the solution

Solubility Of Ionic Compounds

- How does an ionic compound dissolve?
- 1. Water molecules cluster around the ions
- 2. If the ions are held together weakly, water molecules are able to cluster around the ion and separate it
- 3. The ion travels through the solution with water clustered around it

Solubility Of Ionic Compounds

- Coulomb's law tells us that the force between oppositely-charged ions increases with q1 and q2 (the charges of the ions)
 - -The lower the charge, the weaker the attraction
- Compounds containing +1 and/or -1 ions tend to be soluble
 - Main exceptions are compounds containing +2 or +3 cations and OH⁻
- Compounds containing only +2/+3 and -2/-3 ions tend to be insoluble
 - Main exception is compounds containing SO₄²⁻

Test Yourself: Solubility

Are the following ionic compounds likely to be

Formula Unit	Cation	Anion	Soluble?
NaBr	Na+	Br	Yes
MgCl ₂	Mg ²⁺	Cl-	Yes
NiSO4	Ni ²⁺	SO4 ²⁻	Yes (exception)
MgCO ₃	Mg ²⁺	CO ₃ 2-	No
Na ₂ CO ₃	Na+	CO ₃ 2-	Yes
Al ₂ O ₃	Al ³⁺	O ²⁻	No