CHEM 100 Principles Of Chemistry

Chapter 5 - How Chemists Measure Atoms & Molecules

5.1 Weighing Objects to Count Objects

- When coin parking meters are emptied, the coins are not counted but weighed
- By knowing that a quarter weighs about 5.67 g, the number of quarters collected can be determined

Number coins = Mass of coins $(g) \times \frac{1 \text{ coin}}{5.67 \text{ g}}$

5.2 Weighing Invisible Objects

ELEMENTS

OD

- The weighing method also works for objects too small to see, such as atoms
- But atoms weigh ~10⁻²² g!
- John Dalton came up ulletwith a relative scale by comparing the masses of the atoms to the lightest atom, hydrogen
 - H has an **atomic weight** of 1

John Dalton (1766 - 1844)mate particles Hydrog. its rel. weight 0 0 00 00 00 000 000 000 000 m of nitric acid, 1 azote + 2 oxyg tom of carburetted om of nitrate of ammonia, 1 nitric acid + m of sugar, 1 alcohol + 1 carbonic acid

Weighing Invisible Objects

- The present system of atomic weights compares the mass of an atom with 1/12 mass of a C-12 atom
 - 1/12 mass of a C-12 atom is called the atomic mass unit (u)
 - One C-12 atom has a mass of exactly 12 u
 - $-1 u = 1.6605 \times 10^{-24} g$
- Atomic weight Ar is

- Mass of a proton = 1.0073 u, neutron = 1.0087 u and electron = 0.00055 u
- Mass of a Au atom = 197.0 u

Calculating with Atomic Weight

Q The atomic weight of S is 32.07. What is the mass in g of one S atom?

A
$$A_r = \frac{Mass of 1 S atom}{1/12 mass of C - 12 atom}$$

$$32.07 = \frac{\text{Mass of 1S atom}}{1.6605 \text{x} 10^{-24} \text{ g}}$$

Mass of 1S atom = $32.07 \times 1.6605 \times 10^{-24}$ g = 5.325×10^{-23} g

$$1 u = 1.6605 \times 10^{-24} g$$

Calculating with Atomic Weight

- Q How many C atoms are there in a 1-carat diamond (0.200 g) if the atomic weight of C is 12.01?
- A Solution map: Atomic weight → Mass 1 C atom → Number of C atoms

$$A_{r} = \frac{Mass of 1C atom}{1/12 mass of C - 12 atom}$$

$$12.01 = \frac{Mass of 1C atom}{1.6605 \times 10^{-24} g}$$

Mass of 1C atom = $12.01 \times 1.6605 \times 10^{-24}$ g = 1.994×10^{-23} g 1 u = 1.6605×10^{-24} g

Calculating with Atomic Weight

A Solution map: Atomic weight → Mass 1 C atom → Number of C atoms

Number C atoms = Mass of C atoms (g) $\times \frac{1 \text{ C atom}}{1.994 \text{ x} 10^{-23} \text{ g}}$

 $= 0.200 \text{ g} \times \frac{1 \text{ C atom}}{1.994 \text{ x} 10^{-23} \text{ g}}$

 $= 1.00 \times 10^{22}$ C atoms

- But, not all atoms of each element are identical
- This results from different numbers of neutrons
- Atoms with the same number of protons and electrons but different numbers of neutrons are called isotopes
 - All CI atoms have 17 protons and 17 electrons
 - Some CI atoms have 18 neutrons (³⁵Cl or CI-35) and some CI atoms have 20 neutrons (³⁷Cl or CI-37)
 - -75.76% of natural CI atoms have an atomic weight of 34.969
 (CI-35) and 24.24% of natural CI atoms have an atomic weight of 36.966 (CI-37)
- So which atomic weight do we use in calculations?

Isotopes

- Since almost all calculations will involve a large number of atoms, we can use a weighted average atomic weight
 - A weighted average takes into account the fractional abundance of each isotope and its atomic weight

Average atomic weight CI =

1	1 H 1.008	2A	_				\bigcap	A	vera	age			ЗA	4A	5A	6A	7A	2 He 4.002
2	3 Li 6.941	4 Be 9.012					a	tom	nic v	vei	ght		5 B 81	6 C 12.01	7 N 14.01	8 O 15.99	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.30	ЗВ	4B	5B	6B	7B	8B	8B	8B	1B	2B	13 Al 26.98	Si 28.08	15 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 40.00	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC (99)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.8	53 126.9	54 Xe 131.3
6	55 CS 132.9	56 Ba 137.2		72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 209.0	85 At 201.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0		104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 HS (277)	109 Mt (268)									
			5 6 L 13	7 5 a C 8.9 140	8 59 e P 0.1 140	9 60 9 r N 0.9 144	0 6 d Pi 4.2 (14	1 61 m Si 15) 150	2 63 m E 0.4 152	3 64 U G 2.0 157	4 69 d T 7.2 158	5 6 b D 3.9 162	6 6 y H 2.5 164	7 6 0 E 4.9 16)	8 6 r T i 7.3 16	9 70 m Y 8.9 173	0 7 b L 3.0 17	1 U 5.0

7

1A

100 Fm 101 **Md** 90 Th 91 Pa 93 Np 94 **Pu** 99 Es 92 U 95 96 97 98 Cf 102 103 89 Bk No Lr Am Cm Ac (243) (244) (257) (260) (227) 237.0 (247) (247) (251) (254) (259) (262) 232.0 231.0 238.0

5.3 The Mole

- Since individual atoms weigh so little, any conventional sample will contain huge numbers of atoms
- To make counting large numbers easier, chemists have developed a counting unit called the mole (mol)
 - The mole is based on atomic weight
 - It is defined as the number of atoms in exactly 12 g of C-12
- This number is the Avogadro constant or Avogadro's number (N_A)

 $1 \text{ mol} = 6.022 \times 10^{23}$

Amedeo Avogadro (1776-1856)

The Mole and Avogadro's Constant

 Think of the mole as a counting unit like dozen

-1 dozen = 12

 If a market buys 60 dozen eggs daily we can calculate how many eggs this is

 $60 \text{ dozen} \times \frac{12 \text{ eggs}}{1 \text{ dozen}} = 720 \text{ eggs}$

• The mole is simply a 'larger dozen'

The Mole and Avogadro's Constant

 Avogadro's constant can be used as a conversion factor

 $1 \text{ mol} = 6.022 \times 10^{23}$ A conversion factor

- 1 mole of <u>anything</u> contains
 6.022x10²³ <u>anythings</u>
- Q How many individual grains are there in 0.55 moles of rice grains?

A
$$0.55 \text{ mols} \times \frac{6.022 \times 10^{23} \text{ grains}}{1 \text{ mol}} = 3.3 \times 10^{23} \text{ grains}$$

One Mole Quantities

There are about 1 mole of stars in the visible universe

About 1 mole of grapefruits would have the same volume as Earth

There are about 1 mole of human cells on Earth

6 billion people, each with about 100 trillion (10¹⁴) cells

1 mole of sulfur atoms weighs about 32 g

18 mL of water contains about 1 mole of H₂O molecules

$\frac{N_A}{\leftrightarrow} \text{ Particles} \left\{ \begin{array}{l} \text{Atoms, ions,} \\ \text{molecules...} \end{array} \right\}$

Q How many atoms are there in 0.033 moles of Au? A Solution map: Moles \rightarrow Particles

$$0.033 \text{ moles} \times \frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mole}} = 2.0 \times 10^{22} \text{ atoms}$$

- Q How many moles of molecules are there in 4 million molecules of alcohol?
- A Solution map: Particles \rightarrow moles

 $4x10^{6}$ molecules $\times \frac{1 \text{ mole}}{6.022 x 10^{23} \text{ molecules}} = 6.64 x 10^{-18}$ moles

Molar Mass

- Being able to convert between number of particles and moles is not very useful by itself
- We need a conversion factor between moles and mass
- This conversion factor is the molar mass

 Units are g/mol
- The molar mass is the mass in grams of one mole of a substance
 - We already know one conversion factor 12 g of $^{12}_{6}$ C = 1 mol
- For elements, these numbers appear on the periodic table

	1A																			8A	
1	1 H 1.008	2A						Mo	ola	r m	ass	s ir)		3A	4A	5A	6A	7A	2 He 4.00	2)2
2	3 Li 6.941	4 Be 9.012							Q	j/m	ol				5 B	6 C 12.01	7 N 14.01	8 0 15.99	9 F 19.00	10 Ne 20.1	8
3	11 Na 22.99	12 Mg 24.30	ЗB	4B	5	Be	6B	7B 8	BB	8B	8B	1B	2	в	13 Al 26.98	Si 28.08	15 30.97	16 S 32.07	17 C 35.45	18 Ar 39.9	95
4	19 K 40.00	20 Ca 40.08	21 Sc 44.96	22 Ti 47.8	2: \ 18 50.	3 2 / (94 52	24 Cr 2.00 5	25 Mn 1 4.94 5	26 -e 5.85	27 Co 58.93	28 Ni 58.69	29 CL 63.5	3 J Z 55 65	0 n .39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 5 79.90	36 Kr 83.8	30
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.2	4 N 2 92.	1 4 b N 91 95	42 /IO 5.94	43 Tc F (99) 1	44 Ru 01.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.	4 JC .9 11	8 2.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.8	53 3 126.9	54 Xe 131.	.3
6	55 CS 132.9	56 Ba 137.2		72 H1 178	7: F T .5 180	3 7 a \ 0.9 18	74 N 33.8 1	75 Re (86.2 1	76)s 90.2	77 Ir 192.2	78 Pt 195.1	79 Au 197	8 J H .0 20	0 g 0.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 209.0	85 At 201.0	86 Rr 222.	1 .0
7	87 Fr 223.0	88 Ra 226.0		104 R 1 (261	i 10 i D 1) (26	15 1 15 5 15 5 15 1 15 1 15 1 15 1 15 1	06 5g (66) (107 1 Bh H 264) (2	108 -IS 277)	109 Mt (268)											
		2	5 6 L	7 .a	⁵⁸ Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sn	n E	3 6 U G	4 id	65 Tb	66 D\	67 / H	7 64 0 E	[₿] €	³⁹	70 7 Yb L	′1 .U	
			13 8	8.9 9	140.1 90	140.9 91	144.2 92	? (145) 93	150. 94	.4 152	2.0 15 5 9	7.2 6	158.9 97	162 98	.5 164	.9 167 9 10	7.3 16 00 1	8.9 1 01 1	73.0 17 102 1	5.0 03	

7

93 Np 94 Pu 99 Es 100 Fm 101 **Md** 91 **Pa** 97 **Bk** 92 U 95 98 Cf 102 89 90 96 Th Ac Cm No Lr Am (244) (243) (262) (227) 237.0 (247) (247) (251) (254) (257) (260) 232.0 (259) 231.0 238.0

Molar Mass Mass Mass

1 Be atom weighs 9.01 u 1 mol of Be weighs 9.01 g The molar mass is 9.01 g/mol 1 mol Be = 9.01 g

 We can use the molar mass as a conversion factor between mols and mass

Q What is the mass of 0.420 moles of Fe?

A Solution map: Moles \rightarrow mass

$$0.420 \text{ moles} \times \frac{55.85 \text{ g}}{1 \text{ mole}} = 23.5 \text{ g}$$

Molar Mass Mass Moles

We can also do the reverse process

Q How many moles are in 16.52 g of S?

A 1 mol of S has a mass of 32.07 g so we must have less than 1 mol

Solution map: Mass \rightarrow moles

$$16.52 \text{ g} \times \frac{1 \text{ mole}}{32.07 \text{ g}} = 0.5151 \text{ mole}$$

$\overset{N_{A}}{\textbf{Converting Particles}} \overset{Molar}{\leftrightarrow} \textbf{Mass} \overset{Mass}{\leftrightarrow} \textbf{Mass}$

- We have developed two conversion factors and can convert between any combination of number of particles, moles and mass
- Calculating number of moles is central!

$\begin{array}{c} \mathsf{N}_{\mathsf{A}} & \overset{\mathsf{Molar}}{\longleftrightarrow} \\ \textbf{Particles} \leftrightarrow \textbf{Moles} & \overset{\mathsf{Molar}}{\leftrightarrow} \textbf{Mass} \\ \end{array}$

Q What is the mass of 3.20x10¹² F atoms?

- A This requires two conversions
 - Note there is no conversion factor for particles to mass in one step
 - Solution map: Particles \rightarrow moles \rightarrow mass

 These type of conversions are very frequent and useful in chemistry!

NA

Mass \leftrightarrow Moles \leftrightarrow Particles

Q How many atoms are there in 2.04 g of Zn atoms?

A This requires two conversions

Molar

- Note there is no conversion factor for mass to particles in one step
- Solution map: Mass \rightarrow moles \rightarrow particles

5.4 Compound Molar Mass

- But the molar mass of a compound is not on the periodic table!
 - The molar mass of a compound is found by adding the molar masses of its constituent elements using its chemical formula
- Q What is the molar mass of CO₂?
 - 1 mol CO₂ contains 1 mole C atoms and 2 moles O atoms

$$1 \text{mole C} \times \frac{12.01 \text{g}}{1 \text{mole C}} = 12.01 \text{g}$$
$$2 \text{ moles O} \times \frac{15.99 \text{ g}}{1 \text{mole O}} = 31.98 \text{ g}$$

A The molar mass is (12.01 g + 31.98 g) = 43.99 g/mol

Test Yourself: Compound Molar Mass

Q What is the molar mass of sugar (C₁₂H₂₂O₁₁)?

A We must add together the molar masses of the atoms

$$12 \text{ moles } C \times \frac{12.01 \text{ g}}{1 \text{ mole } C} = 144.12 \text{ g}$$
$$22 \text{ moles } H \times \frac{1.008 \text{ g}}{1 \text{ mole } H} = 22.198 \text{ g}$$
$$11 \text{ moles } O \times \frac{15.99 \text{ g}}{1 \text{ mole } O} = 175.89 \text{ g}$$

The molar mass is (144.12 g + 22.198 g + 175.89 g) = 342.21 g/mol

Compound Moles ↔ Compound Mass

- Q What is the mass of 0.664 moles CH₄ molecules?
- A Solution map: Moles → mass We need the molar mass of CH₄ Molar mass = (1 x 12.01 g/mol) + (4 x 1.008 g/ mol) = 16.04 g/mol

Compound Mass ↔ Compound Moles

Q How many moles of I₂ molecules is 0.500 kg of I₂? A Solution map: Mass (kg) \rightarrow mass (g) \rightarrow moles

$$0.500 \text{ kg} \times \frac{10^3 \text{ g}}{1 \text{ kg}} = 500 \text{ g}$$

We need the molar mass of I_2 Molar mass = (2 x 126.9 g/mol) = 253.8 g/mol

500 g
$$\times \frac{1 \text{ mole}}{253.8 \text{ g}} = 1.97 \text{ moles}$$

Molar mass

53
126.9

5.5 Mass Percent Composition of Compounds

- We can now work out what percentage of the mass of a compound is due to each constituent (the mass percent)
- A sample of NaCl is 39% Na by mass
 - A 100 g sample of NaCl contains 39 g Na, 61 g Cl

Mass % X =
$$\frac{Mass of X in sample}{Total mass of sample} \times 100\%$$

The sum of all Mass % values is 100%

Mass Percent Composition

Q 3.92 g of Fe reacts to form 5.04 g of iron oxide. What is the mass % Fe in the iron oxide?

Mass % Fe = $\frac{\text{Mass of Fe in sample}}{\text{Total mass of sample}} \times 100\%$ = $\frac{3.92 \text{ g}}{5.04 \text{ g}} \times 100\% = 77.8\%$

Mass Percent Composition

Q What mass of NaCl contains 2.40 g of Na given NaCl is 39% Na by mass?

Mass % Na = $\frac{\text{Mass of Na in sample}}{\text{Total mass of sample}} \times 100\%$ Total mass of sample = $\frac{Mass of Na in sample}{Mass \% Na} \times 100\%$ $=\frac{2.40 \text{ g}}{39\%} \times 100\%$ = 6.15 gEnter '39' and '100' in your calculator

Mass Percent Composition From Chemical Formulas

 It is possible to determine the mass percent directly from a chemical formula by assuming we have 1 mole of the compound

Mass % X =
$$\frac{Mass of X in 1 mol sample}{Total mass of 1 mol sample} \times 100\%$$

Q What is the mass percent of Ca in Ca₃(PO₄)₂?

Mass % Ca =
$$\frac{\text{Mass of Ca in 1 mole sample}}{\text{Total mass of 1 mole sample}} \times 100\%$$

= $\frac{3 \times 40.08 \text{ g/mol}}{310.18 \text{ g/mol}} \times 100\% = 38.76\%$

5.6 Interpreting Chemical Reactions Quantitatively

- Balanced chemical equations allow us to predict, in terms of molecules, the amounts of reactants required and products made
- For example

 $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(I)$

 This reaction tells us <u>2</u> molecules of octane react with <u>25</u> molecules of oxygen to make <u>16</u> molecules of carbon dioxide and <u>18</u> molecules of water

Quantities In Chemical Quantities

Quantities In Chemical Reactions

• The coefficients in our octane example can be multiplied by a constant factor and still be balanced

 $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(I)$

4 C₈H₁₈(I) + 50 O₂(g) → 32 CO₂(g) + 36 H₂O(I)

×10 20 C₈H₁₈(I) + 250 O₂(g) → 160 CO₂(g) + 180 H₂O(I)

• If we multiply by 6.022x10²³ we get

2 mols C₈H₁₈(I) + 25 mols O₂(g) \rightarrow 16 mols CO₂(g) + 18 mols H₂O(I)

• An equation can mean either molecules or moles!

Moles In Chemical Quantities

 $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(I)$

• This reaction tells us either...

"2 molecules of octane react with 25 molecules of oxygen to make 16 molecules of carbon dioxide and 18 molecules of water."

• Or...

"2 moles of octane react with 25 moles of oxygen to make 16 moles of carbon dioxide and 18 moles of water."

Now we can do calculations with masses

Moles ↔ Moles In Chemical Reactions

• For example

$$2 \mathsf{P}(s) + 3 \mathsf{Cl}_2(g) \rightarrow 2 \mathsf{PCl}_3(I)$$

• The stoichiometry (balance) tells us

2 moles P(s) = 3 moles $Cl_2(g) = 2$ moles $PCl_3(l)$

We can write various mole ratios including

Moles ↔ Moles In Chemical Reactions

Q How many moles of $H_2O(I)$ are produced from the combustion of 4.78 moles of $CH_4(g)$?

A Write the balanced chemical equation

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$

Write the mole ratio connecting H₂O and CH₄

$$\frac{1 \text{ mole } CH_4}{2 \text{ mole } H_2 O} \quad \text{Or upside down version}$$
Finally
$$4.78 \text{ moles } CH_4 \times \frac{2 \text{ mole } H_2 O}{1 \text{ mole } CH_4} = 9.56 \text{ moles } H_2 O$$

Test Yourself: Moles ↔ Moles In Chemical Reactions

Q How many moles of N₂(g) are needed to completely react with 115 moles of H₂(g) to make ammonia according to the following equation?

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

A Write the mole ratio connecting N_2 and H_2

Mass ↔ Mass In Chemical Reactions

- We can also do problems involving mass if we remember that number of moles is central
- We <u>cannot</u> convert directly from mass to mass
 - The conversion factor for mass to moles is
 molar mass and moles to moles is mole ratio
- The strategy is think about what steps are possible and link them together
- Try not to memorize a sequence of steps for each type of calculation

Mass ↔ Mass In Chemical Reactions

Q How many kg of CO₂ are released when 1.00 kg of CaCO₃ undergoes decomposition?

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

We cannot go directly from mass to mass

We must convert mass to moles first and then moles to mass at the end

A Solution map: Mass CaCO₃ \rightarrow moles CaCO₃ \rightarrow moles CO₂ \rightarrow mass CO₂

All quantities must be in g because molar mass is in g Molar mass $CaCO_3 = 100.06$ g/mol

Molar mass $CO_2 = 43.99$ g/mol

Mass ↔ Mass In Chemical Reactions

Q How many kg of CO₂ are released when 1.00 kg of CaCO₃ undergoes decomposition?

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

A Solution map: Mass CaCO₃ \rightarrow moles CaCO₃ \rightarrow moles CO₂ \rightarrow mass CO₂

Test Yourself: Mass ↔ Mass In Chemical Reactions

Q How many kg of CaO are made when 1.00 kg of CaCO₃ undergoes decomposition?

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

A Solution map: Mass CaCO₃ → moles CaCO₃ → moles CaO → mass CaO

 $1000 \text{ g CaCO}_{3} \times \frac{1 \text{ mole CaCO}_{3}}{100.06 \text{ g}} \times \frac{1 \text{ mole CaO}}{1 \text{ mole CaCO}_{3}} \times \frac{56.07 \text{ g}}{1 \text{ mol CaO}}$ = 560.4 g CaO = 0.560 kg

Notice that 1.00 kg of CaCO₃ makes 0.440 kg CO₂ plus 0.560 kg CaO? Law of conservation of mass!

Test Yourself: Mass ↔ Mass In Chemical Reactions

Q How many grams of O₂ are consumed when 10.0 g of alcohol (C₂H₆O(I)) combusts?

 $C_2H_6O(I) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(I)$

A Solution map: Mass alcohol → moles alcohol → moles oxygen → mass oxygen

N_A Molar Mass Mass → Moles → Mass

Let's redraw the map for particles, moles and mass

5.7 Limiting Reactants

 In some instances the reactants for a chemical reaction might be given in stoichiometric amounts (in the mole ratio indicated by the balanced chemical equation)

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$$

– The equation indicates we need 2x as many moles of $H_{\rm 2}$ as $O_{\rm 2}$

- So stoichiometric amounts would be
 - 2 mols H₂ and 1 mol O₂
 - 1 mol H₂ and $\frac{1}{2}$ mol O₂

0.882 mols H_2 and 0.441 mols O_2

Always in the ratio 2 H₂ : 1 O₂

Limiting Reactants

- In other instances the reactants for a chemical reaction might <u>not</u> be given in stoichiometric amounts
- One of the reactants is used up first
- This is called the limiting reactant and the amount of product produced is called the theoretical yield
 - The limiting reactant is the reactant in shortest supply
 - The limiting reactant limits the amount of product that can be made
 - All limiting reactant is used up but some non-limiting reactant(s) remain

$2 \operatorname{S}(g) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

 What would happen if the reaction started with 2 moles of S and 1 mole of O₂?

Limiting Ingredients

Limiting Reactants

$2 \operatorname{S}(g) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

- What would happen if the reaction started with 2 moles of S and 1 mole of O₂?
- We need more O₂ than we are provided with – We need 3 moles but we only have 1 mole
- The O₂ is the limiting reactant
 - It is in shortest supply
 - It is used up completely and some sulfur remains unreacted
- How do we find the limiting reactant in general?
- The limiting reactant is the one that makes the least amount of product

Limiting Reactants

Q 1.45 moles of SO₂ reacts with 0.92 moles of O₂. Which is the limiting reactant and how many moles of SO₃ will be made?

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$$

A Find out which reactant makes the least amount of product

1.45 mols
$$SO_2 \times \frac{2 \text{ mols } SO_3}{2 \text{ mols } SO_2} = 1.45 \text{ mols } SO_3$$

0.92 mols $O_2 \times \frac{2 \text{ mols } SO_3}{1 \text{ mol } O_2} = 1.84 \text{ mols } SO_3$
Limiting reactant is SO_2

Test Yourself: Limiting Reactants

Q 0.68 moles of C₃H₈ reacts with 3.50 moles of O₂. Which is the limiting reactant and how many moles of CO₂ will be made?

 $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(I)$

A Find out which reactant makes the least amount of product

Test Yourself: Limiting Reactants

Q 0.44 moles of AI(OH)₃ reacts with 1.32 moles of HCI. Which is the limiting reactant and how many moles of H₂O will be made?

 $AI(OH)_3(s) + 3 HCI(aq) \rightarrow AICI_3(s) + 3 H_2O(I)$

A
0.44 mols Al(OH)₃ ×
$$\frac{3 \text{ mols H}_2 \text{O}}{1 \text{ mol Al(OH)}_3}$$
 = 1.32 mols H₂O
1.32 mols HCI× $\frac{3 \text{ mols H}_2 \text{O}}{3 \text{ mols HCI}}$ = 1.32 mols H₂O
Limiting reactant?

A This is <u>not</u> a limiting reactant reaction (it is **stoichiometric**) and the amount of H₂O is 1.32 mols