CHEM 100 Principles Of Chemistry

Chapter 6 - Wet Chemistry

6.1 General Characteristics of Solutions

- Solutions may contain dissolved solids, liquids or gases
- In Lake Nyos, Cameroon, CO₂ produced by underground volcanoes dissolves in the lake
- The CO₂ remains poorly-mixed at the bottom of the lake
- Landslides disturb the water and release the CO₂
 - 1700 people and 3500 cattle killed by asphyxiation in 1986

Components of Solutions

- Most of the gases and liquids we encounter are homogeneous mixtures (solutions)
- A solution is made up of at least two components
- 1. The solvent is the majority phase

2. The **solute** is the substance(s) dissolved

- Vinegar is a solution of water (solvent) and acetic acid (solute)
- Soda is a solution of water (solvent), sugar, color and flavors (solutes)
- Solutions may be dilute (little solute) or

Common Solutions

Solution Type	Solvent Phase	Solute Phase	Example (Solvent/Solute)
Gaseous	Gaseous	Gaseous	Air (N ₂ /O ₂)
	Gaseous	Liquid	Fog (Air/H ₂ O)
Liquid	Liquid	Gaseous	Soda (Water/CO ₂)
	Liquid	Liquid	Milk (Water/Milk fat)
	Liquid	Solid	Saltwater (Water/NaCl)
Solid	Solid	Gaseous	Styrofoam (Plastic/Air)
	Solid	Solid	Steel (Fe/C)

6.2 The Dissolving Process: Polar or Nonpolar?

- Molecules like water have an unequal distribution of electrons
 - Some parts of the molecule have a small charge
- The O atom has, on average, slightly more electrons that the H atoms
 - The O atom is labeled 2δ- and the
 H atoms δ+
- Any molecule with small charges is termed **polar**

How Polar Solvents Dissolve Solutes

- Polar solvents are very good at dissolving ionic solids
- If the solute-solvent attractions are stronger than the solute-solute and solvent-solvent attractions, the substance dissolves

How Polar Solvents Dissolve Solutes

- Sodium chloride dissolves when multiple water molecules cluster around each ion
- This takes some time
 - NaCI doesn't dissolve instantly
- Dissolved substances are indicated with (aq)

How Polar Solvents Dissolve Solutes

O atoms (δ -)

point to cations

- Once dissolved, the solute is surrounded by solvent molecules (solvated)
 - The water molecules orient differently
- Water is able to dissolve both anions and cations

H atoms (δ +)

point to anions

+

Electrolyte Solutions

- Solutions of dissolved ions conduct electricity and are called electrolyte solutions
 - lons move in solution and current flows
- <u>All</u> solutions of soluble ionic solids are electrolyte solutions

Electrolyte Solutions

 Acids also dissolve in water to make ions

 $HCI(g) \rightarrow H^+(aq) + CI^-(aq)$

<u>All</u> solutions of acids are electrolyte solutions

Nonelectrolyte Solutions

- Polar sugar dissolves <u>without</u> making ions
- Sugar solutions do not conduct electricity and so are nonelectrolyte solutions

Glucose is soluble in water because it is polar but it does not form ions

Dissolving: Polar and Nonpolar Molecules

- Ionic substances with large charges (Al₂O₃, CaCO₃) tend to be insoluble in water
- Nonpolar molecules (C₈H₁₈, CCl₄) tend to be insoluble in water because they are not attracted to water molecules and the water molecules 'stick together'
- Nonpolar molecules tend to be soluble in nonpolar solvents because there are no strong attractions between solvent or solute

"Like dissolves like"

6.3 Solution Composition

- We can define whether a solution is dilute or concentrated by using concentration
- The solute mass percent is

 The higher the concentration, the higher the mass percent of solute

Test Yourself: Mass % Solute

- Q What is the mass % solute of a solution made by dissolving 2.03 g of NaCl in 50.0 mL of water given the density of water is 0.991 g/mL?
- A We have mass of solute but not mass of solution Use density to find mass of solvent

Density =
$$\frac{Mass}{Volume}$$

Mass = Density × Volume
= $\frac{0.991g}{mL}$ × 50.0 mL = 49.55 g

A Finally

Molarity

- When using aqueous solutions, it is more convenient to use a volume-based concentration
- The **molarity** of a solution is

Molarity (M) =
$$\frac{\text{Solute moles}}{\text{Solution volume (L)}}$$

Q What is the molarity of solution made by dissolving 0.277 moles of LiBr in 250 mL of solution?

A We must convert volume to liters (250 mL = 0.250 L)

Molarity (M) =
$$\frac{0.277 \text{ moles}}{0.250 \text{ L}} = 1.11 \text{M} \text{M} = \text{mols/L}$$

Using Molarity

- Chemists frequently need to prepare solutions of a specific concentration
- Q What mass of NaCl (58.44 g/mol) must be used to produce 0.500 L of a 0.125 M solution?
- A Solution map: Molarity \rightarrow Moles \rightarrow Mass

Molarity (M) =
$$\frac{\text{Solute Moles}}{\text{Solution Volume (L)}}$$

Solute Moles = Molarity (M) × Solution Volume (L)
=
$$\frac{0.125 \text{ moles}}{L} \times 0.500 \text{ L}$$

= 0.0625 moles

Using Molarity To Prepare Solutions

Q What mass of NaCl (58.44 g/mol) must be used to produce 0.500 L of a 0.125 M solution?

A Solution map: Molarity \rightarrow Moles \rightarrow Mass

Preparing Solutions

- So how would you prepare 0.500 L of a 0.125 M NaCl solution?
- 1. Weigh out 3.65 g of NaCl
- 2. Carefully transfer it to a 500 mL volumetric flask
- 3. Add enough water to bring the total volume to 0.500 L
 - Volumetric flasks have an etched line marking the specified volume

Volumetric flasks are available in many standard sizes

Combining Molarity & Mass % Solute

- We can convert mass % solute to molarity or vice versa if we have density
- Q What is the molarity of a 5.0% glucose solution (180.16 g/mol) if the density of the solution 1.02 g/mL?
- A Solution map: Mass % solute → Mass/100 g → Moles/ mL → Molarity

5.0% means 5.0 g glucose/100 g solution

 $\frac{5.0 \text{ g glucose}}{100 \text{ g solution}} = 0.0278 \text{ moles}$ $Mols = 5.0 \text{ g} \times \frac{1 \text{ mole}}{180.16 \text{ g}} = 0.0278 \text{ moles}$ $Mass = 100 \text{ g} \times \frac{1 \text{ ml}}{1.02 \text{ g}} = 98.0 \text{ mL}$

Combining Molarity & Mass % Solute

Q What is the molarity of a 5.0% glucose solution (180.16 g/mol) if the density of the solution 1.02 g/mL?

A Now we can calculate the molarity

Molarity (M) = $\frac{\text{Solute moles}}{\text{Solution volume (L)}}$ 0.0278 moles 0.0980 L = 0.284 M5% glucose (dextrose) & 0.9 % saline IV

6.4 **Dilutions**

- Using molarity simplifies dilution calculations
 - Dilution is the process of making a concentrated solution less concentrated by adding solvent
- The key is remembering that the total number of moles before dilution and after dilution is the same
 - The solute is simply more 'spread out'

Dilutions

• We can calculate the initial number of moles of solute

Moles solute =
$$\frac{\text{Moles solute}}{\frac{\text{Volume solution}}{\frac{Molarity}{Molarity}}} \times \text{Volume solution}$$

And since the total moles after dilution is the same, we can write

$$M_{1} \cdot V_{1} = M_{2} \cdot V_{2}$$
Moles before dilution Moles after dilution

Dilutions

- Q What is the concentration of a solution made by diluting 15 mL of 15.0 M HNO₃ to 90 mL total volume?
- A Use the dilution equation $M_1 \cdot V_1 = M_2 \cdot V_2$ We know $M_1 = 15.0$ M, $V_1 = 15$ mL (0.015 L), $M_2 = ?$ and $V_2 = 90$ mL (0.090 L)

Rearranging to solve for M₂

Test Yourself: Dilutions

- Q How would you prepare 200 mL of a 0.100 M NaCl solution from a 0.500 M NaCl solution?
- A Use the dilution equation $M_1 \cdot V_1 = M_2 \cdot V_2$ We know $M_1 = 0.500$ M, $V_1 = ?$, $M_2 = 0.100$ M and $V_2 = 200$ mL (0.200 L)

Dilutions

- Pipets are used to dispense exact quantities of liquids
 - Manual pipets use a rubber bulb to suck up and expel liquid
 - Automatic pipets have a calibrated plunger to suck up and expel liquid

6.5 Solution Stoichiometry

- Molarity is useful in chemical reactions in solutions
- It connects moles of reactants and products with volumes
- Q What is the minimum volume of 2.0 M HCl needed to react with 60.0 g of NaHCO₃ according to the equation HCl(aq) + NaHCO₃(s) → NaCl(s) + CO₂(g) + H₂O(l)?
- A Solution map: Mass NaHCO₃ \rightarrow Moles NaHCO₃ \rightarrow Moles HCI \rightarrow Volume HCI

First convert 60.0 g NaHCO3 to moles

Moles NaHCO₃ = 60.0 g
$$\times \frac{1 \text{ mole}}{83.978 \text{ g}} = 0.714 \text{ moles}$$

6.5 Solution Stoichiometry

- Q What is the minimum volume of 2.0 M HCl needed to react with 60.0 g of NaHCO₃ according to the equation HCl(aq) + NaHCO₃(s) → NaCl(s) + CO₂(g) + H₂O(l)?
- A Solution map: Mass NaHCO₃ \rightarrow Moles NaHCO₃ \rightarrow Moles HCI \rightarrow Volume HCI

Moles HCI = moles NaHCO₃
$$\times \frac{1 \text{ mole HCI}}{1 \text{ mole NaHCO}_3} = 0.714 \text{ moles}$$

Finally, convert mols into volume using molarity

$$M = \frac{\text{moles}}{L}$$
 Volume HCI = $\frac{0.714 \text{ mole HCI}}{2.0 \text{ moles / L}} = 0.357 \text{ L}$

6.6 Acid-Base Reactions

- One useful chemical reactions is an acid-base or neutralization reaction
- A base is a substance that produces OH⁻ (hydroxide) in water

Acid + Base \rightarrow Salt + Water HF(aq) + KOH(aq) \rightarrow KF(aq) + H₂O(I)

- The products are a salt and water (a doubledisplacement reaction)
- Antacids are bases that neutralize the acids that cause heartburn

- The method of quantitatively determining the amount of acid (or base) is called a titration
- By knowing the volume and concentration of base added to neutralize a volume of acid, the concentration of acid can be calculated
 - An indicator changes color to signal neutralization

- Q 25.0 mL of HNO₃ is neutralized by 16.35 mL of 0.330 M NaOH according to HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(I). What was the molarity of the HNO₃?
- A Solution map: (Volume and molarity) NaOH → Moles
 NaOH → Moles HNO₃ → Molarity HNO₃
 First, use molarity and volume to find moles NaOH

 $Molarity = \frac{Moles}{Volume (L)} \qquad Moles = Molarity \times Volume (L)$

Moles NaOH = $0.330 \text{ M} \times 0.01635 \text{ L} = 0.005396 \text{ moles}$

- Q 25.0 mL of HNO₃ is neutralized by 16.35 mL of 0.330 M NaOH according to HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(I). What was the molarity of the HNO₃?
- A Solution map: (Volume and molarity) NaOH \rightarrow Moles NaOH \rightarrow Moles HNO₃ \rightarrow Molarity HNO₃

Moles $HNO_3 = Moles NaOH \times \frac{1 mole HNO_3}{1 mole NaOH}$

= 0.005396 moles

- Q 25.0 mL of HNO₃ is neutralized by 16.35 mL of 0.330 M NaOH according to HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(I). What was the molarity of the HNO₃?
- A Solution map: (Volume and molarity) NaOH \rightarrow Moles NaOH \rightarrow Moles HNO₃ \rightarrow Molarity HNO₃

Molarity HNO₃ =
$$\frac{\text{Moles HNO}_3}{\text{Volume (L)}}$$

= $\frac{0.005396 \text{ mols}}{0.0250 \text{ L}}$
= 0.216 M