CHEM 100 Principles Of Chemistry

Chapter 7 - Electronic Structure Of Atoms

7.1 **Balloons and Blimps**

- Why is H₂ explosive but He unreactive?
- Why do elements in the same group of the periodic table have similar chemistry?
- Why are some elements metals and some non-metals?
- Why do metals form cations and nonmetals form anions?
- The answers are tied up with the arrangement of electrons in atoms

Electronic Structure Of Atoms

- Many of the properties of the elements can be explained by models of the atoms
- The number of protons and electrons in the atom are fundamentally related to its properties
- Modern descriptions started with the discovery of the electron as a particle by J.J. Thompson in 1897

Joseph J. Thompson 1856-1940

Models Of The Atom

- Several revolutionary concepts developed in the early 1900s followed
- Physicists like Niels Bohr (1885-1962), Albert Einstein (1879-1955) and Erwin Schrödinger (1887-1951) proposed new ideas that were incorporated into new models of the atom

7.2 Electromagnetic Radiation

- Electromagnetic radiation (light) is not matter (it has no mass)
- It can be described as a wave and defined by its amplitude and its wavelength (A)

Greek 'l' (lambda)

5

Light As A Wave

- Another property of a moving wave is frequency (v)
 - Frequency is the number of wave peaks passing a stationary point
 - Units are cycles/s or Hz (Hertz)

Large wavelength Small wavelength

Small frequency

Large frequency

Wavelength and frequency are inversely proportional

Light As A Wave

Wavelength and frequency are inversely proportional

$$v \propto \frac{1}{\lambda}$$

• We can make this an equality by adding a constant

$$v = c \cdot \frac{1}{\lambda} = \frac{c}{\lambda}$$

• The constant is the speed of light ($c = 3.00x10^8$ m/s)

Test Yourself: Electromagnetic Radiation

Q What is the wavelength of an AM radio wave of frequency 1070 kHz?

A Solution map: kHz \rightarrow Hz (/s) \rightarrow Wavelength

$$1070 \text{ kHz} \times \frac{1000 \text{ Hz}}{1 \text{ kHz}} = 1.070 \text{ x} 10^6 \text{ / s}$$

Next, calculate the wavelength

$$v = \frac{c}{\lambda}$$
 $\lambda = \frac{c}{v} = \frac{3.00 \times 10^8 \text{ m/s}}{1.070 \times 10^6 \text{ /s}} = 280 \text{ m}$

Visible Light

- White (visible) light is split into its component colors by a prism
- The human eye perceives a narrow range of wavelengths as a different color
 - The human eye responds from about $\lambda = 750 400$ nm
- Visible light is only part of the electromagnetic

Red ($\lambda \approx 750$ nm) Orange Yellow Green Blue Indigo Violet ($\lambda \approx 400$ nm)

The Electromagnetic Spectrum

Classes Of Electromagnetic Radiation

- Gamma rays ($\lambda \approx pm$) produced by stars (cosmic rays) and some radioactive nuclei, kills biological cells
- X-rays travel through most materials, used in x-radiographs, excess causes cancer
- Ultraviolet (UV) causes sunburn, excess causes cancer
- Visible causes changes to molecules in the retina responsible for vision, harmless
- Infrared (IR) invisible but can be felt by the skin as heat
- Microwaves causes water molecules to vibrate more intensely, used for ovens and communications

The Photoelectric Effect

- Albert Einstein won a Nobel prize for his explanation of the photoelectric effect
- Electrons are emitted from a metal when light strikes the metal
 - Electron energy increased with frequency of radiation
 - A minimum frequency is required
 - The number of electrons increased with the brightness

Light As Particles

- Einstein proposed that the photoelectric effect can only be explained if light is a particle
- The light particle is called a photon
- The energy of the particle is proportional to its frequency, v

 $E = h \cdot \nu$

where E is energy (J) and h is **Planck's constant** (6.626x10⁻³⁴ J·s)

High Energy Large v Small λ

Low Energy Small v Large λ

7.3 Absorption And Emission By Atoms

- When atoms
 absorb radiation,
 they **emit** it again
 later
- The radiation they absorb or emit is the same and specific to the element
- Atoms emit only certain wavelengths

The Bohr Atom

 Neils Bohr envisaged the atom with electrons in circular orbits around the nucleus

- Solar system model

- The potential energy of the orbit increases with distance from the nucleus
- Electrons can only exist in specific energy orbits; their energy is

The Bohr Atom: Radiation Absorption

- When an atom absorbs a photon an electron jumps from small orbits to large orbits
- When an atom emits a photon an electron jumps from large orbits to small orbits
- In both cases the energy change is quantized

The Bohr Atom

- Each orbit is characterized by a principal quantum number, n (1, 2, 3, 4...)
- Each jump between orbits is a fixed amount of energy

$$E_2 - E_4 = \Delta E = h \cdot v$$

$$Large \Delta E = Large v = Small \lambda$$

7.4 The Quantum-Mechanical Atom

- Louis de Broglie (1892-1987) suggested that both electromagnetic radiation <u>and</u> <u>matter</u> can behave like a wave
- These properties were confirmed with electrons
- Erwin Schrödinger (1887-1961) developed a mathematical model based on the wave-particle properties of electrons
- The Bohr model was replaced by the quantum-mechanical

Properties Of Electrons In The Quantum-Mechanical Atom

- 1. Electrons occupy definite energy states characterized by the **principal quantum number** (n = 1, 2, 3, 4...)
 - The n = 1 state has the lowest potential energy, is most tightlyheld and is closest (on average) to the nucleus
 - Electrons occupy the lowest n state preferentially
- 2. Each state has n **sublevels**, called **orbitals**, designated s, p, d, f
 - For a given state, energy varies s
 - Electron motion for a particular orbital is unknown but theory can describe where the electron is likely to be
 - Each sublevel has a specific shape and orientation
- 3. No more than two electrons of opposite **spin** can occupy each orbital

Properties Of Electrons In The Quantum-Mechanical Atom

- Electrons possess a property called spin?
 - Electrons can spin in only two directions, up or down
- Like the Bohr model, electrons are confined in quantized energy levels but orbits are replaced by orbitals and the motion is much more complex
- The model naturally predicts that electrons have an average distance from the nucleus

Spin up

Spin down

Possible Energy State Combinations

Principal energy level	Possible sublevels	Number of orbitals	Total number of e ⁻	Designation
n = 1	S	1 2 1s		1s
n = 2	S	1	2	2s
	р	3	6	2р
n = 3	S	1	2	3s
	р	3	6	Зр
	d	5	10	3d
n = 4	S	1	2	4s
	р	3	6	4p
	d	5	10	4d
	f	7	14	4f 2

Test Yourself: Quantum Numbers

Q Which of the following orbitals cannot exist?

1s, 2s, 3s, 3p, 2d, 4f, 3f, 2p, 4p, 4d

A Write out all the possible combinations

- n = 1: 1s
- n = 2: 2s, 2p
- n = 3: 3s, 3p, 3d
- n = 4: 4s, 4p, 4d, 4f

The orbitals that cannot exist are the 2d and 3f

Shapes Of Orbitals

• All s orbitals are spherical

Simplified Shapes Of p Orbitals

- All p orbitals are "peanut shaped"
- There are three equivalent-energy p orbitals pointed in different directions in space
- Similarly, there are five equivalent-energy d orbitals and seven equivalent-energy f orbitals

7.5 Electron Configurations

- Electrons add to orbitals in order of lowest energy to highest energy
 - -When all electrons are in the lowest possible combination of orbitals, we say the electrons are in the **ground state**
 - -When some electrons are in higher energy orbitals, we say the electrons are in the **excited state**
- Electrons occupy orbitals in pairs
 - Two electrons fit in each orbital with opposite spins
- The ground state electronic configuration of H is written as 1ş¹

Means 1 electron in the 1s orbital

Electron Configurations

We could also write the electron configuration as an orbital diagram

$$1s^{1} = 1s$$

$$1s^{1} = 0nly space for 1$$

$$more electron (1s^{2})$$

- The arrow represents the electron spin (spin up)
- Remember, each orbital can hold a maximum of two electrons only (with opposing spins)

Energy Of Orbitals And Order Of Filling

Energy Of Orbitals And Order Of Filling

- Add electrons to orbitals starting at the lowest energy
- 2. Add two electrons to each orbital with opposite spins
- 3. Keep electrons unpaired if energyequivalent orbitals are available (Hund's rule)

7.6 Electron Configurations: H to C

Element	Number Of Electrons	Orbital diagram	Electron Configuration
н	1	1s 2s 2p 3s 1 1 1 1	1 s ¹
He	2		1s ²
Li	3		1s ² 2s ¹
Be	4		1s ² 2s ²
В	5		1s ² 2s ² 2p ¹
С	6		1s ² 2s ² 2p ²

Electron Configurations: N to Mg

Element	Number Of Electrons	Orbital diagram	Electron Configuration
N	7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1s ² 2s ² 2p ³
0	8	$\uparrow\downarrow \uparrow\downarrow \uparrow\uparrow \uparrow$	1s ² 2s ² 2p ⁴
F	9		1s ² 2s ² 2p ⁵
Ne	10	$\uparrow\downarrow \qquad \uparrow\downarrow \qquad \uparrow\downarrow \qquad \uparrow\downarrow \qquad \Box$	1s ² 2s ² 2p ⁶
Na	11	$\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow$	[Ne]3s ¹
Mg	12	$\uparrow\downarrow \qquad \uparrow\downarrow \qquad \uparrow\downarrow \qquad \uparrow\downarrow \qquad \uparrow\downarrow \qquad \uparrow\downarrow$	[Ne]3s ²

Test Yourself: Electron Configurations

Q What is the electron configuration of CI?

- A CI (Z = 17) has 17 electrons
 - 1s²2s²2p⁶3s²3p⁵ or [Ne]3s²3p⁵

Q What is the electron configuration of Mg²⁺?

A Mg²⁺ (Z = 12) has 10 electrons

1s²2s²2p⁶ or [Ne]

Q What is the electron configuration of S²⁻?

A S²⁻ (Z = 16) has 18 electrons

1s²2s²2p⁶3s²3p⁶ or [Ar]

17
CI
35.45

16	
S	
32.07	

Valence Electrons And The Periodic Table

- The outer electrons of an atom are held least tightly — These electrons are involved in chemical bonding and reactions
- Valence electrons are electrons in the highest n shell
- All other electrons are core electrons F $1s^{2} 2s^{2}2p^{5}$ Na $1s^{2}2s^{2}2p^{6} 3s^{1}$ Fluorine has 7 valence electrons Ti $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6} 4s^{2} 3d^{2}$ core

Valence Electrons And The Periodic Table

1A

н

1s¹

3

Li

 $2s^1$

11

Na

3s1

19

K

4s1

37

Rb

5s¹

2

3

4

5

2A

Be

 $2s^2$

12

Mg

 $3s^2$

20

Са

 $4s^2$

38

Sr

 $5s^2$

- The period number <u>corresponds with n</u> for the outer electrons
- The A group number <u>corresponds with</u> <u>the total number of</u> <u>valence electrons</u>
- All elements in the same group have the same number and type of valence

<u>All</u> halogens have the outer electron configuration ns²np⁵

3A

5

B

2s22p1

13

A

3s²3p

31

Ga

4s²4p¹

49

In

5A

7

N

2s²2p³

15

P

3s²3p³

33

As

4s²4p³

51

Sb

5s²5p³

4A

6

C

2s²2p²

14

Si

3s²3p²

32

Ge

 $4s^24p^2$

50

Sn

5s²5p

8A

2

He

 $1s^2$

10

Ne

2s²2p⁶

18

Ar

3s²3p⁶

36

Kr

4s²4p⁶

54

Xe

5s²5p⁶

7A

9

F

2s²2p⁵

17

CI

3s²3p⁵

35

Br

4s²4p⁵

53

5s²5p⁵

6A

8

O

2s²2p⁴

16

S

3s²3p⁴

34

Se

4s²4p⁴

52

Te

5s²5p⁴

Energy Of Orbitals And Order Of Filling

 We can use the periodic table to determine the electron configuration (and orbital filling order) very easily

Q What are the electron configurations of Ni and Br?

 $Ni = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$

 $Br = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$

Electron Configurations And The Periodic Table

- The chemical properties of an element are largely determined by the number of valence electrons
- For example, the noble gases (group 8A) all have very low reactivity and are associated with filled subshells
- A <u>filled subshell</u> is associated with special stability
- Elements near the noble gases are reactive because by gaining or losing a few electrons they can achieve this special stability

Electron Configurations And The Periodic Table

- Q What are the electron configurations of Na⁺ and Ne?
- A Na⁺ (Z = 11) has 10 electrons: $1s^22s^22p^6$ Ne (Z = 10) has 10 electrons: $1s^22s^22p^6$
- Q What are the electron configurations of S²⁻ and Ar?
- A S²⁻ (Z = 16) has 18 electrons: $1s^22s^22p^63s^23p^6$ Ar (Z = 18) has 18 electrons: $1s^22s^22p^63s^23p^6$
- Atoms tend to form stable ions with the <u>same</u> <u>electron configuration as the nearest noble gas</u>
 - Works best for groups 1A, 2A, 3A, 6A, 7A

Explaining Chemical Properties With The Periodic Table

- We know that metals form cations by losing electrons and nonmetals form anions by gaining electrons
- We can use the periodic table to explain why
 - The explanation is based on Coulomb's law: the attraction between the electron and nucleus
- The energy to remove a valence e⁻ depends on the number of positive nuclear charges (atomic number Z)

- If Z is high, the electron will be less likely to be removed

 But intervening electrons reduce the effect of the nuclear charge by 'shielding' it

Explaining Element Properties With The Periodic Table

 The nuclear charge experienced by the valence e⁻ is not Z but the smaller effective nuclear charge Z_{eff}

$$Z_{eff} = Z - \sigma$$

where $\sigma \sim$ number of lower n electrons

 Z_{eff} determines the attraction between e⁻ and nucleus

This e⁻ experiences reduced nuclear charge, Z_{eff}, partly cancelled out by inner e⁻

Ζ

e

e

Explaining Element Properties With The Periodic Table

Note that it is much easier to remove a valence electron from Na than CI!

Explaining Element Properties With The Periodic Table

- The large Z_{eff} applies to all elements on the right side of the periodic table (the nonmetals)
- In the case of CI, the large Z_{eff} attracts electrons towards itself, even those from other nearby atoms
- When Na and CI atoms are close, the CI atom attracts the valence electron of Na more strongly than Na can hold onto it
 - An electron is **transferred** and an **ionic bond** is formed

