Chapter 15: Chemical Kinetics Il

CHEM 102
Jussi Eloranta

L ow concentration = Few collisions  High concentration = More collisions




Rate Laws =
A — Products If you are familiar
A[A] with calculus (derivative)
Rate = Ek[A]" = s
ate Al A7

* Experiments would allow you to determine the reaction
order and rate constant, but

what if you wanted to know [A] over time?

* Need to “Integrate” the rate law (i.e., solve the above
differential equation)





Zero Order Integrated Rate Law =)

AlA] Solution to differential eq.:

Rate = k[A]” =k :/ el
[A]t — —kt + [A]U intercept = [-A-][]

ﬁy-

-\-\_.

[A]

y=mz+b . slope =-k

o

e,

* Plot of [A] vs. time : T~
gives a straight line | I | |
Time
Note: [A] = [A]: is a function of time.
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First Order Integrated Rate Law

A[A]

Rate = k|A| = N

[A], = [A]y e
In|Al; = =kt + In|A]g

e

Solution to differential eq.:

a[4]
“ar A

y=mzx+b

* Plot of In[A] vs. time
gives a straight line

e
o
e
T

| __—Yy-intercept = In[A],

~__ slope = -k





Second Order Integrated Rate Law

AlA] Solution to differential eq.:
_ 2 __
Rate = klAI" = =4, / -k
1 1
—— =kt
Al |Alo fﬁ"
slope=k
Yy =mx +b -

* Plot of 1/[A] vs. time
gives a straight line

1/[A]

-

-

h;—« y-intercept = 1/[A],

t





AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

[NO,] (M)

Experimental determination of reaction order | -

Instead of measuring the initial rate, we could measure
[A] as a function of time and then plot. Whichever curve
gives a straight line (previous slides) must be the order.

Ot" order?
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This is the one!





Half-life, ti =J

Time required for the concentration of a reactant to fall
to one-half of its initial value.

* To solve for ti for first 1
order reaction take the ’ Alt = §[A]0
integrated rate law and |
plug in [Alo = 1 and [A]

This gives directly:

pug] 1
lﬂ,[A]t = —kt + Zﬂ[A]U

0.093
Substitute [A], in above: " t1 /e = .
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Half-Life for a First-Order Reaction

)

At £,
For a first-order reaction, the half-life is constant
T and independent of concentration.
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Things to consider =

0.693
t1/9 = 7

* Higher kK means faster (shorter) half-life, faster reaction

* Every half-life, concentration decreases by 1/2
* After x half-lives, [A] = (1/2) [Alo

* On your own: Solve for tiz for Oth and 2nd order
reactions.
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Summary of Integrated Rate Laws =)

TABLE 14.2 Rate Law Summary Table

Integrated Straight-Line Half-Life
Rate Law Plot Expression
A
_—y-intercept = [A]y (Al 1 [Al
B - ? t - — = —
Time t
A
In[A]; = —kt + In[A]o = yintercept = In[Alo Gaas
1 Rate = K[A]* st = tijo=— t -k (0.693)
In (A — —kt Slope = —k
[Alo
Time t
A
2 M~ Ll.g71 L‘kt"‘i E t12=—1 =i_1
2 Rate = k[A] S AL [Alo > /27 KA k [Alo

—y-intercept = 1/[Alp

-
-

Time t
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Half-life example

RADIOCARBON FORMATION:

*C-14 produced in atmosphere
*|Incorporated into plants

1. COSMIC RAY PROTONS

TH (>109 ewv.)+ 14N = 1n + 1H + 13N

through photosynthesis S o CHRIUNE
o| ted into animals cemeee .
ncorpora 3. CARBON CHEMISTRY
through food
. 14C + O = 14CO + O
*Relative amount of C-14 stays 4CO HO & tico) o
constant in living organisms 1460, v enoTos TG e o
Untll th ey dle Willard F. Libby, 1946 Nobel Prize, Chemistry 1960

C-14 undergoes first order radioactive decay
with ty. = 5730 years
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Half-life example =)

Suppose a human bone found in a cave has 19.5% of
the C-14 found in living organisms. How old is the
bone?

0.693 0.693 —4 . —1
— k= =1.21 x1
1. t1/2 L 5730 yr x 10 I
2. In[A]; = —kt + In[A], In (0.195[A]0> 1y
Alo

t = 13,500 years old
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Temperature effects on kinetics =)

2 Hy(4) + O2(¢) — 2 H20(g)

* Hydrogen and oxygen react
slowly unless a spark Is applied

* then, boom!

* Why? (activation energy)

13





* Reaction rates are highly
dependent on temperature:

Al4]
At

Rate = k|A]|" =

* Arrhenius Equation (1889) says

rate constant depends on i
temperature: Svante Arrhenius
1859-1927

—Eg Uppsala/Stockholm, Sweden
k = Ae RT

14




Arrhenius Equation =)

—Eg
k — Ae RT
 k = Rate constant

» A = Frequency factor (same . _—
units as k)

* E, = Activation energy

Ny
R = Gas constant =8.314 J /
(mol K) .
fﬁ/

thermodynamics... Rate constant increases with

temperature
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Chemical reaction energy diagram =)

| A+B->C+D
Recall from earlier: ~
* Chemical reactions O
involve breaking and YIA+B
forming bonds L | peactants
(O
'S C+D
. _These processes GC) Products
Involve changes In +
. O .
(potential) energy all

Reaction Progress
(also called reaction coordinate)
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Reaction energy diagram A+ B->C+ D |~

Enthalpy (Heat of Reaction): AHn

>

EXOTHERMIC
A+B * energy (heat)

Reactants released
C+D Hixn ¢ AH,, is negative

Products * products at
lower energy
than reactants

>

Reaction Progress

Potential Energy
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Reaction energy diagram A +B->C+ D |3

* Enthalpy (Heat of Reaction): AHu»

>

ENDOTHERMIC
C+D * Energy (heat)

Products absorbed
A + B TAern * AHnn IS positive

* products at
higher energy
than reactants

Reactants

>

Reaction Progress

Potential Energy
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Collision theory =)

Think about what must happen first in a reaction: collision!

Os + NO - NO> + O3

6% ®©

Both the kinetic energy of the molecules and their relative
orientation determine the outcome.
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Collision theory =)

Os + NO - NO> + O3

1
[ . ]

(or “activated complex”)
Molecules come together to form “transition” (¥) compound:

* distorted compared to “favored” configuration
* higher energy than both the reactants & products
* between reactants and products along the reaction path

20




Collision theory =)

Os + NO - NO; + O

Moving from transition state towards better configuration
with a lower energy
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Reaction coordinate =)

OOO—NO?

>

Os + NO I E. (activation energy)

NO, + O AH e

Potential Energy

Reaction Progress
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Reaction coordinate =)

A+B—— AB*——C +D
Exothermic Reaction Endothermic Reaction

AH; AH?‘.

A+DB C+D

AH rxn

Potential energy
Potential energy

AH rxn

C+D A+B

Reaction progress Reaction progress
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Activation energy (E.) k

* E. Is an energy barrier that the reactants must overcome to form the
products

* Frequency factor (A): Rate of collisions (collisions / second)

e Not all collisions result In a reaction because some reactants do not
nave enough energy to overcome E.

* How could you increase rate constant?
* Increase number of collisions per time (A)

* Increase the number of collisions with enough energy to overcome
the activation energy (exponential factor)

« Decrease activation energy (E,)

* How do you give the reactants more (kinetic) energy? (temperature)

24
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Thermal energy =)

°|n a given sample of Thermal Energy Distribution

mo | ecu | €S, th € ene rgy C As temperature increases, the fraction \
f()l IOWS B() Itz mann of molecules with enough energy to surmount
_ _ _ the activation energy barrier also increases.
distribution \ /
* Higher T: more ,
molecules have enough L Activation
energy

energy to overcome
activation energy

Fraction of molecules
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Arrhenius Law RS 1 '
_Eg
* Experimentally In k =In(Ae” RT)
determine A, E., etc. In k =ln A+ In(e” 7F)
* Measure Kk at varying E,
temperatures (must be nk=inA- -

expressed in Kelvin)

E, (1
* Plot: In(k) vs (1/T) mk=-Tp (T) tin A

“Arrhenius plot”

y =m x + b

*slope =-E./ R (equation for straight line)
* Intercept = In(A)

20
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Arrhenius Law

“Arrhenius plot”

257 y=-112x10*(x) + 26.8
20 B 1""'1“
¥ 15- TN
= -~
10- ~
5_
04 08 12 4g.40°

1T (K

Note the axes in the graph!

e F.=93.1 kJ/ mol
A =436 x 10" M1s

Linear least squares fit
using computer

27




Two-point form of Arrhenius Equation =)

Make measurements at two temperatures only

lnk—g—&l 1)
ki) R \Ty T

Note: Not recommmended unless the data
IS verified to be of Arrhenius form.
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Reaction mechanisms -

* Most reactions occur in multiple steps rather than in

a single collision event!

* Mechanism: The exact molecular pathway that reactants
follow to become products (i.e., multiple elementary steps)

* Elementary reactions: The individual steps In a reaction
mechanism (cannot be broken down further). Takes place
In a single collision.

* Add elementary reactions to get the overall reaction
(reaction mechanism)

29




Example reaction

Overall reaction: 2 NO(g) + O2(g) — 2 NO3(g)
but we know that N2O- Is also detected during reaction

Elementary Steps:
Step 1: NO(g) -

- NO(g) — N20O-(g)

Step 2: NoOs(g) -

-032(9) — 2 NO»(g)

2 NO(g) + O2(g) > 2 NO2(9)

N-O- is an “intermediate™ S

pecies that appears in the

mechanism, but not in overall reaction:
* formed In elementary step, then consumed
* usually short-lived and often difficult to detect

30




Rate laws for elementary reactions

* “Molecularity” = Number of reactants in an elementary step
* Rate law follows stoichiometry (molecularity)
For elementary reactions only! (not overall reaction)

Unimolecular:

Bimolecular:
Bimolecular:

‘ermolecular:
‘ermolecular:
‘ermolecular:

A - Products
A+ A - Products
A + B - Products
A+A+A - Proc
A+A+B - Proc

A+B+C - Prod

Rate = k[A
Rate = k[A]?
Rate = k[A]|B

ucts Rate = k[A]
ucts Rate = k[A

ucts Rate = k[A]

(No known reactions beyond this)

P[] }Yae{!
BJ[C]
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Example 2 NO(g) + O2(g) — 2 NOs(g) i

Step1: NO(g)+ NO(g) — W) Rate = k;[NOJ°
Step 2: NaO3(g) + O2(g) = 2 NOo(g) Rate = kz[N20-][O:]

2 NO(g) +0O2(g9) =2 NO2(9)

What is the overall rate?? We will see In a bit...

32




Kinetics for multi-step reactions =4

* Often one step Is fast and the other is slow
* The slow step will control the overall rate of the reaction

(“rate-limiting” step)

* If first step Is slow:

33




Kinetics for multi-step reactions =

* Often one step Is fast and the other is slow
* The slow step will control the overall rate of the reaction

(“rate-limiting” step)

* If last step Is slow:

* Intermediate will increase In concentratlon enough to
drive the slow reaction .

* Steady state approximation

34




Example 2 NO(g) + O2(g) — 2 NOs(g) i

I(;>l<l

/ Slow

Step 1: NO(g)+ NO(g) — NoO2(g) Rate = ki[NOJ?
St@p 2 . NQOQ(Q) + Og(g) — 2 NOQ(Q) Rate = [NZOZ][OZ]

—

2 NO(g) + Oa(g) — 2 NOs(g) 'S

What is the overall rate?? Rate = ki[NOJ?

35
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Energy Diagram for a Two-Step Mechanism

%)

Because E, for Step 1 > E, for Step 2, Step 1
has the smaller rate constant and is rate limiting.

- é h
A - 3 c Transition o Step 1 has higher
/ states activation energy.
/ o Step 1 has smaller

rate constant.
EaQ;
Ly

o Step 1 determines

overall rate.
A ,

Energy

Reactants
AH!‘XH

Products

Step 1 Step 2

Reaction progress

© 2017 Pearson Education, Inc.
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Eg =
RT |

Catalysis k= Ae”

* Recall: One way to increase rate constant is to reduce
the activation energy.

* A catalyst can alter the reaction mechanism such that
the activation energy Is reduced.

>

Original

(the double hump
Is not important)

Catalyze

Potential Energy

Reaction Progress
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Example: Catalytic destruction of ozone 5

e Ozone: O3

* Absorbs UV light in the stratosphere and prevents it
from reaching the Earth’s surface (skin cancer).

May September

38




Example: Catalytic destruction of ozone =

Chlorofluorocarbons (CFCs; refrigerant)
* Example: CFC-11 = CCIsF

* Very unreactive (inert) so they were used as coolants,
propellants, etc.

* Stratosphere: ~20 km altitude, lots of UV light from sun

Cl| hv Q Cl
[ \

F—c‘:—c| S F—C‘:- + Cl|
Cl Cl

39




Example: Catalytic destruction of ozone =)

CCIlsF + hv = Cl + CCls Cl + O3 —» CIO + O2
ClIO+ O - Cl + 0O

O‘2> Overall: O+ 03-02 + O

<O3+h\)—>0+
O+ 0O, - 03

This should happen normally

Cl atom acts as a catalyst: Provides an alternative
pathway for reaction to take place.

(cyclic reaction: Cl is re-formed)

40
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Montreal Protocol =)

® Ban ned CFCS |n 1987 Northern Heméslé%l';c’ergc?::‘nl\clazsophaer:(ijcSCFo6ncentrations:

600 g ! ; g ! 12
——SFy

——CFC-11 | _
——CFC-113 |
.l

10

* Ozone hole will
recover in ~100 years

ELN
o
o

W
o
o

SF, (ppt)

* Fortunately alternative
compounds available S A N SN N

CFCs, CCI4 (parts per trillion - ppt)
N20 (part per billion - ppb)

0 j | | ) I
1750 1800 1850 1900 1950 2000

Year

http://cdiac.ornl.gov/ftp/oceans/CFC_ATM_Hist/CFC_ATM_Hist 2015/Figl.png

41




CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

CSUN

Homogeneous vs. heterogeneous catalysis | ~

[ Homogeneous catalysis ] [Heterogeneous catalysis}

O o .{ 9 9
Product

. Q .\ Reactant—.\. . .
-
® o

Catalyst in same Catalyst in different

phase as reactants phase than reactants

© 2017 Pearson Education, Inc.
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Catalytic converters =)

Smog in Hong Kong

Unburned Hydrocarbons + NOX * O, +
PANs + more
PAN = Peroxyacetyl nitrate (health hazard)

43




CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

CSUN

Catalytic converters =)

Exhaust manifold

Exhaust pipe

Tail pipe
___i_"‘ r— |
Alr compressor: -
source of secondary air Catalytic converters \
catalytic

ff?’ + Unburned Hydrocarbons + O,—__——>-— CO, + H,0

| catalytic

2NO + 2NO, S . 2N, +30,

converter
1

(downside: catalytic converters are expensive!)

414




CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

CSUN

Catalytic converters =)

1976-2000 Percent Days
Exceeding the Federal Standards 0.7

10084, Percent Basin-Mavs x

N Max. 1-hr average in Air Basin 1973-2010 |
LA area 0:6 \ N
0.5

Peak Ozone in Los Angeles 1955-1972

€
| S I
S0 % . il - &
. o) ) — 04
y x‘-«. - O
o = 0.3
[ n T T T LI 1 T T L 0.2
o TRORD R R4 En ER 90D 02 G4 90 93 00 South Coast A”- Basln ‘ %
.J.;II .‘E-IEII'T.“.HH‘_.« e L] | I-.:-l.n u1 ] L L 1 1 1
B B o 1950 1960 1970 1980 1990 2000 2010

Year

Despite more cars and more miles driven!
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Enzymes =

* Biological catalysts which increase reaction rates for
biochemical reactions.

* Enzyme (usually a protein) has an “active site” where
reactants can bind.

Example: Sucrase

Glucose part  Fructose part
of molecule of molecule

Sucrose in active site

Bond is strained
and weakened.

‘ 2 | :
3 5 w/
E ) Al - - . &
A .
. -5 ‘ =
2 -
[ y -
, 4
‘/1 ———— » - .
=L -
¥ =
“ / <« ! /&
-
» * e -
N \ -
# - )

C6H1206 +  CgH206
uuuuu Fructose

Sucrase enzyme
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Enzyme-Substrate Binding =

[ Substrate J

' IA(:twe site

Enzyme substrate J

complex

E+S<=ES (Fast)
ES—->E+ P (Slow, rate limiting)

(Michaelis-Menten kinetics)
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Tips for this section

* Understand/ldentify integrated rate laws:
* Equations
* Plots, slope, intercept, etc.

* Half-life

* Reaction order

* Reaction coordinate - identify activation energy,
enthalpy, transition state, etc.

* Elementary steps, rates
* Catalysis, how do catalysts increase reaction rate?
* Lots of calculations!
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