

Chapter 15: Chemical Kinetics II

CHEM 102 Jussi Eloranta

Low concentration = Few collisions

High concentration = More collisions

Rate Laws

- Experiments would allow you to determine the reaction order and rate constant, but what if you wanted to know [A] over time?
- Need to "integrate" the rate law (i.e., solve the above differential equation)

Zero Order Integrated Rate Law

Note: $[A] = [A]_t$ is a function of time.

Ē

First Order Integrated Rate Law

Rate =
$$k[A] = -\frac{\Delta[A]}{\Delta t}$$

Solution to differential eq.:
 $-\frac{d[A]}{dt} = k[A]$
 $[A]_t = [A]_0 e^{-kt}$
 $ln[A]_t = -kt + ln[A]_0$
 $y = mx + b$
Plot of ln[A] vs. time
gives a straight line
 t

Second Order Integrated Rate Law

Experimental determination of reaction order

Instead of measuring the initial rate, we could measure [A] as a function of time and then plot. Whichever curve gives a straight line (previous slides) must be the order.

(least squares fitting)

Half-life, $t_{1/2}$

Time required for the concentration of a reactant to fall to one-half of its initial value.

• To solve for $t_{1/2}$ for first order reaction take the integrated rate law and plug in $[A]_0 = 1$ and [A]= 0.5:

$$ln[A]_t = -kt + ln[A]_0$$

Substitute [A], in above:

$$(A)_{t} = \frac{1}{2}[A]_{0}$$
This gives directly:

$$ln\left(\frac{1}{2}\right) = -kt_{1/2}$$

$$t_{1/2} = \frac{0.693}{k}$$

Half-Life for a First-Order Reaction

Things to consider

$$t_{1/2} = \frac{0.693}{k}$$

- Higher k means faster (shorter) half-life, faster reaction
- Every half-life, concentration decreases by 1/2
- After x half-lives, $[A] = (1/2)^{x} [A]_{0}$
- On your own: Solve for $t_{1/2}$ for 0th and 2nd order reactions.

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Summary of Integrated Rate Laws

CALIFORNIA

Half-life example

- •C-14 produced in atmosphere
- Incorporated into plants through photosynthesis
- Incorporated into animals through food
- Relative amount of C-14 stays constant in living organisms until they die

14CO₂ + PHOTOSYNTHESIS → BIOLOGY

Willard F. Libby, 1946 Nobel Prize, Chemistry 1960

C-14 undergoes first order radioactive decay with *t*_{1/2} = 5730 years

Half-life example

Suppose a human bone found in a cave has 19.5% of the C-14 found in living organisms. How old is the bone?

1.
$$t_{1/2} = \frac{0.693}{k}$$
 $k = \frac{0.693}{5730 \ yr} = 1.21 \times 10^{-4} \ yr^{-1}$

2.
$$ln[A]_t = -kt + ln[A]_0$$

$$ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

$$ln\left(\frac{0.195[A]_0}{[A]_0}\right) = -kt$$

 $t = 13,500 \ years \ old$

 $[A]_t = 0.195 [A]_0$

Temperature effects on kinetics

- $2 H_2(\ell) + O_2(\ell) \rightarrow 2 H_2O(g)$
- Hydrogen and oxygen react slowly unless a spark is applied
- then, boom!
- Why? (activation energy)

Effect of temperature on reaction rate

• Reaction rates are highly dependent on temperature:

$$Rate = k[A]^n = -\frac{\Delta[A]}{\Delta t}$$

 Arrhenius Equation (1889) says rate constant depends on temperature:

$$k = Ae^{\frac{-E_a}{RT}}$$

Svante Arrhenius 1859-1927 Uppsala/Stockholm, Sweden

Arrhenius Equation

$$k = A e^{\frac{-E_a}{RT}}$$

- k = Rate constant
- A = Frequency factor (same units as *k*)
- *E*_a = Activation energy
- *R* = Gas constant = 8.314 J / (mol K)
- Why? Collision theory & thermodynamics...

Chemical reaction energy diagram

Recall from earlier:

- Chemical reactions involve breaking and forming bonds
- These processes involve changes in (potential) energy

Reaction energy diagram $A + B \rightarrow C + D$

Enthalpy (Heat of Reaction): ΔH_{rxn}

EXOTHERMIC

- energy (heat) released
- ΔH_{rxn} is <u>negative</u>
- products at lower energy than reactants

Reaction energy diagram $A + B \rightarrow C + D$

• Enthalpy (Heat of Reaction): ΔH_{rxn}

ENDOTHERMIC

- Energy (heat) absorbed
- ΔH_{rxn} is positive
- products at higher energy than reactants

Collision theory

Think about what must happen first in a reaction: collision!

```
O_3 + NO \rightarrow NO_2 + O_2
```


Both the kinetic energy of the molecules and their relative orientation determine the outcome.

Collision theory

$O_3 + NO \rightarrow NO_2 + O_2$ $\left[\begin{array}{c} O \\ O \end{array} \right]^{\ddagger}$

(or "activated complex")

Molecules come together to form "transition" (‡) compound:

- distorted compared to "favored" configuration
- higher energy than both the reactants & products
- between reactants and products along the reaction path

Collision theory

Products form:

Moving from transition state towards better configuration with a lower energy

Reaction coordinate

Reaction coordinate

Activation energy (E_a)

$$k = Ae^{\frac{-E_a}{RT}}$$

- *E*_a is an energy barrier that the reactants must overcome to form the products
- Frequency factor (A): Rate of collisions (collisions / second)
- Not all collisions result in a reaction because some reactants do not have enough energy to overcome E_a
- How could you increase rate constant?
 - Increase number of collisions per time (A)
 - Increase the number of collisions with enough energy to overcome the activation energy (exponential factor)
 - Decrease activation energy (E_a)
- How do you give the reactants more (kinetic) energy? (temperature)

Thermal energy

- In a given sample of molecules, the energy follows Boltzmann distribution
- Higher T: more molecules have enough energy to overcome activation energy

Thermal Energy Distribution

As temperature increases, the fraction of molecules with enough energy to surmount the activation energy barrier also increases.

Arrhenius Law

- Experimentally determine *A*, *E*_a, etc.
- Measure *k* at varying temperatures (must be expressed in Kelvin)
- Plot: ln(*k*) vs (1/*T*) "Arrhenius plot"
- slope = $-E_a / R$
- intercept = ln(A)

$$k = Ae^{-\frac{E_a}{RT}}$$

$$ln \ k = ln(Ae^{-\frac{E_a}{RT}})$$

$$ln \ k = ln \ A + ln(e^{-\frac{E_a}{RT}})$$

$$ln \ k = ln \ A - \frac{E_a}{RT}$$

$$ln \ k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + ln \ A$$

y = m x + b(equation for straight line)

Arrhenius Law

Note the axes in the graph!

E_a = 93.1 kJ / mol *A* = 4.36 x 10¹¹ M⁻¹s⁻¹

Linear least squares fit using computer

Two-point form of Arrhenius Equation

Make measurements at two temperatures only

$$ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Note: Not recommended unless the data is verified to be of Arrhenius form.

29

Reaction mechanisms

- Most reactions occur in multiple steps rather than in a single collision event!
- <u>Mechanism</u>: The <u>exact</u> molecular pathway that reactants follow to become products (i.e., multiple elementary steps)
- <u>Elementary reactions</u>: The individual steps in a reaction mechanism (cannot be broken down further). Takes place in a single collision.
- Add elementary reactions to get the overall reaction (reaction mechanism)

Example reaction

Overall reaction: $2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)$ but we know that N₂O₂ is also detected during reaction Elementary Steps:

$$\begin{array}{rl} Step \ 1: & NO(g) + NO(g) \rightarrow N_2O_2(g) \\ \\ Step \ 2: & N_2O_2(g) + O_2(g) \rightarrow 2 \ NO_2(g) \\ \\ & 2 \ NO(g) + O_2(g) \rightarrow 2 \ NO_2(g) \end{array}$$

N₂O₂ is an "intermediate": Species that appears in the mechanism, but not in overall reaction:

- formed in elementary step, then consumed
- usually short-lived and often difficult to detect

Rate laws for elementary reactions

- ≣♪
- "Molecularity" = Number of reactants in an elementary step
- Rate law follows stoichiometry (molecularity)
 <u>For elementary reactions only!</u> (not overall reaction)
 - Unimolecular: $A \rightarrow Products$ Rate = k[A]Bimolecular: $A + A \rightarrow Products$ Rate = k[A]²Bimolecular: $A + B \rightarrow Products$ Rate = k[A][B]Termolecular: $A + A + A \rightarrow Products$ Rate = k[A]³Termolecular: $A + A + B \rightarrow Products$ Rate = k[A]²[B]Termolecular: $A + B + C \rightarrow Products$ Rate = k[A][B][C]

(No known reactions beyond this)

Example $2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)$

Step 1: $NO(g) + NO(g) \rightarrow N_2O_2(g)$ Rate = $k_1[NO]^2$ Step 2: $N_2O_2(g) + O_2(g) \rightarrow 2 NO_2(g)$ Rate = $k_2[N_2O_2][O_2]$

 $2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)$

What is the overall rate?? We will see in a bit...

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Kinetics for multi-step reactions

- Often one step is fast and the other is slow
- The <u>slow step</u> will control the overall rate of the reaction ("rate-limiting" step)
- If first step is slow:

Kinetics for multi-step reactions

- Often one step is fast and the other is slow
- The <u>slow step</u> will control the overall rate of the reaction ("rate-limiting" step)
- If last step is slow:
 - Intermediate will increase in concentration enough to drive the slow reaction
 - Steady state approximation

Example $2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)$

Energy Diagram for a Two-Step Mechanism

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Catalysis

$$k = Ae^{-\frac{E_a}{RT}}$$

- Recall: One way to increase rate constant is to reduce the activation energy.
- A catalyst can alter the reaction mechanism such that the activation energy is reduced.

Example: Catalytic destruction of ozone

- Ozone: O₃
- Absorbs UV light in the stratosphere and prevents it from reaching the Earth's surface (skin cancer).

Example: Catalytic destruction of ozone

Chlorofluorocarbons (CFCs; refrigerant)

- Example: $CFC-11 = CCI_3F$
- Very unreactive (inert) so they were used as coolants, propellants, etc.
- Stratosphere: ~20 km altitude, lots of UV light from sun

Example: Catalytic destruction of ozone

 $\begin{array}{ccc} \mathsf{CCI}_3\mathsf{F} + \mathsf{h}\nu \to \mathsf{CI} + \mathsf{CCI}_3 & \mathsf{CI} + \mathsf{O}_3 \to \mathsf{CIO} + \mathsf{O}_2 \\ & & \underbrace{\mathsf{CIO} + \mathsf{O} \to \mathsf{CI} + \mathsf{O}_2} \\ \mathsf{O}_3 + \mathsf{h}\nu \to \mathsf{O} + \mathsf{O}_2 \\ & & \mathsf{O} + \mathsf{O}_2 \to \mathsf{O}_3 \end{array} \begin{array}{c} \mathsf{Overall:} & \mathsf{O} + \mathsf{O}_3 \to \mathsf{O}_2 + \mathsf{O}_2 \end{array}$

This should happen normally

Cl atom acts as a catalyst: Provides an alternative pathway for reaction to take place.

(cyclic reaction: Cl is re-formed)

Montreal Protocol

- Banned CFCs in 1987
- Ozone hole will recover in ~100 years
- Fortunately alternative compounds available

http://cdiac.ornl.gov/ftp/oceans/CFC_ATM_Hist/CFC_ATM_Hist_2015/Fig1.png

CALIFORNIA STATE UNIVERSITY NOBTHBIDGE

SUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Homogeneous vs. heterogeneous catalysis

FIGHT

SMOG

Catalytic converters

Smog in Hong Kong

LA smog protests of 1954

WE WANT

CLEAN SWEEP

SMOG

Supervisors

SEE

Unburned Hydrocarbons + NOx

PAN = Peroxyacetyl nitrate

→ O₃ +
PANs + more

(health hazard)

Catalytic converters

(downside: catalytic converters are expensive!)

Catalytic converters

Despite more cars and more miles driven!

Enzymes

- Biological catalysts which increase reaction rates for biochemical reactions.
- Enzyme (usually a protein) has an "active site" where reactants can bind.

Example: Sucrase

$E + S \rightleftharpoons ES$ (Fast) $ES \rightarrow E + P$ (Slow, rate limiting)

(Michaelis-Menten kinetics)

Tips for this section

- Understand/Identify integrated rate laws:
 - Equations
 - Plots, slope, intercept, etc.
- Half-life
- Reaction order
- Reaction coordinate identify activation energy, enthalpy, transition state, etc.
- Elementary steps, rates
- Catalysis, how do catalysts increase reaction rate?
- Lots of calculations!