Chapter 16: Chemical Equilibrium

Chem 102 Jussi Eloranta

Equilibrium

State in which competing processes are balanced so that no observable change takes place as time passes.

Lift

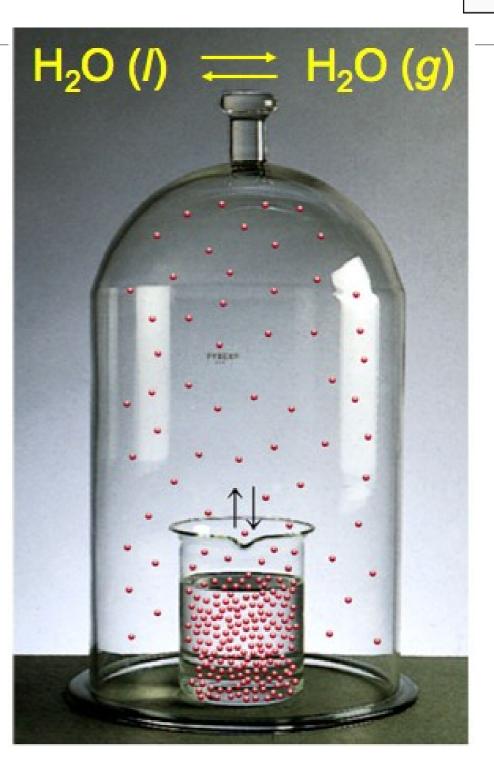
Gravity

Sometimes called "dynamic equilibrium"

ATE UNIVERSITY NORTHRIDGE

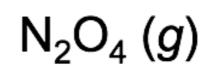
Physical Equilibrium

- Balance of competing physical processes:
 - Evaporation vs. condensation
 - Freezing vs. melting
- At equilibrium: **rate** of evaporation equals **rate** of condensation
- Net result: No <u>observable</u> change (individual molecules move in a balanced way)



Chemical Equilibrium

• Balance of two or more chemical reactions



Colorless gas

• At equilibrium: **rate** of decomposition equals **rate** of dimerization

- [N₂O₄] and [NO₂] do not change over time
- Individual molecules react but in a balanced way

Forward reaction:

Decomposition

Yucky-brown

 $2NO_{2}(g)$

Dynamic equilibrium

rate of forward reaction = **rate** of reverse reaction

- Reactions are still occurring, but the rates are equal
- An individual molecule could react (or not)
- No <u>net</u> change in concentrations of reactants or products over time
- Concentrations of reactants and products are not necessarily equal to each other!
- All chemical reactions are theoretically reversible, but sometimes this can be ignored because reverse rate is very small

Dynamic Equilibrium

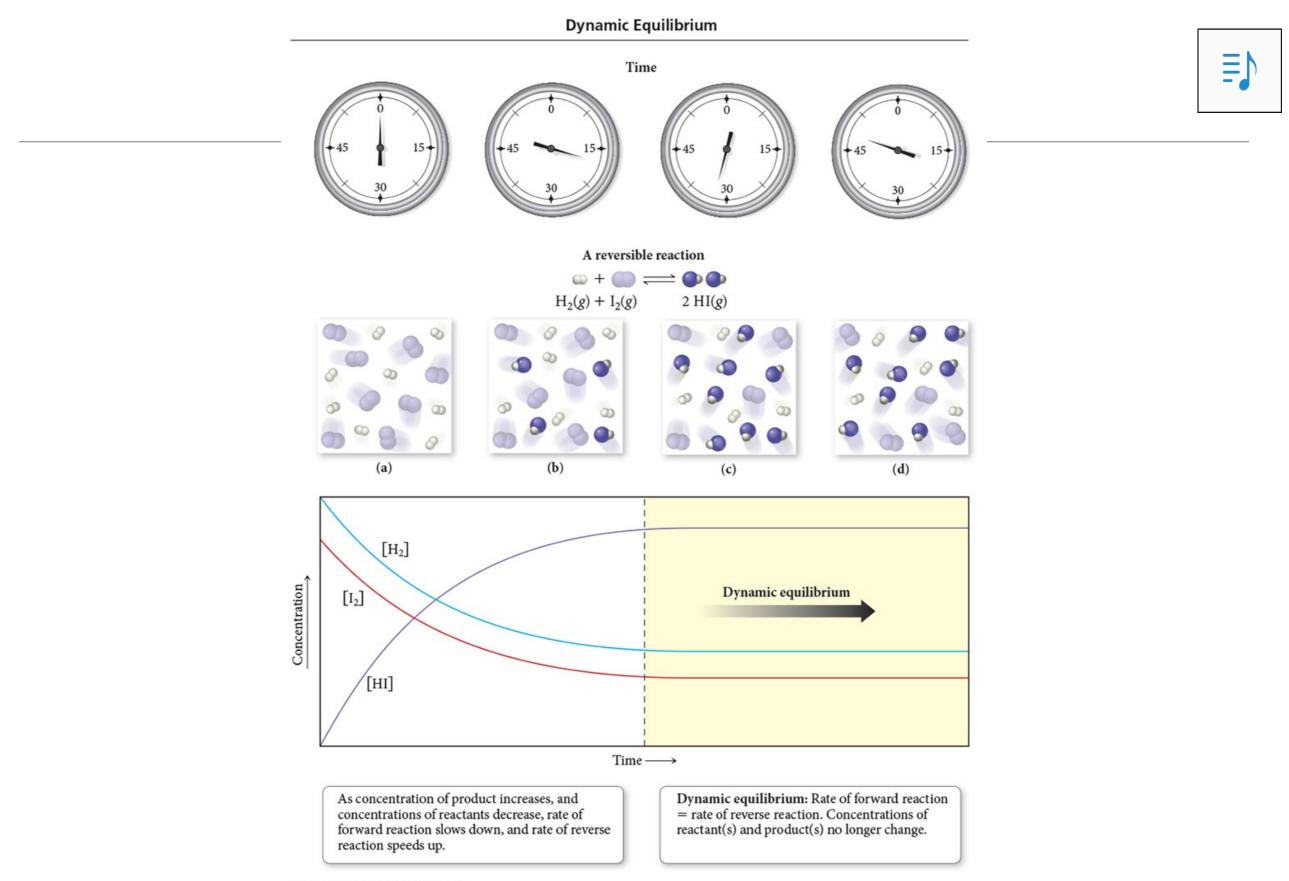
$$H_2(g) + I_2(g) \xrightarrow[k_r]{k_f} 2 HI(g)$$

- At equilibrium:
 - forward rate = reverse rate
 - Note: k_f does not necessarily equal k_r

$$Rate_{f} = k_{f}[H_{2}]^{a}[I_{2}]^{b}$$
$$Rate_{r} = k_{r}[HI]^{c}$$

 $k_f [H_2]^a [I_2]^b = k_r [HI]^c$

Side note: IUPAC prefers: ≓ May use: ₽ Do not use ↔, ⇔, ↔



© 2017 Pearson Education, Inc.

The Equilibrium Constant, K

- Concentrations of the reactants and products are not necessarily equal at equilibrium
- Quantify relative concentrations (<u>at equilibrium</u>) with the equilibrium constant (K)

$$aA + bB \rightleftharpoons cC + dD$$

Law of mass action:

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \sim \frac{\text{Products}}{\text{Reactants}}$$

Note: Upper case K and lower case k are different quantities!

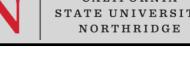
Relationship between *K* and *k*

For an **elementary step** at equilibrium (= we know the reaction order from the coefficients):

$$aA + bB \xleftarrow[k_r]{k_r} cC + dD$$
$$Rate_f = Rate_r$$

$$k_f[A]^a[B]^b = k_r[C]^c[D]^d$$

$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b} = \frac{k_f}{k_r}$$



Equilibrium constant - notes

- Do not include pure liquids or solids in *K* expression (later: their activity is equal to one)
- Solutions: Use molarity (M) units
- Gases: Use <u>pressure</u> in atmospheres (atm)
- *K* has <u>no units</u>, regardless of the form of the equation (you can learn more about this in Chem 321/351)
- *K* is temperature dependent
- More later:

K_c for solutions (concentration - M) *K_p* for gases (partial pressure - atm)

Significance of *K*

• What does the magnitude of *K* tell us about the reaction at equilibrium?

$$\mathrm{H}_{2} + \mathrm{Br}_{2} \Longrightarrow 2 \,\mathrm{HBr} \qquad \qquad K = \frac{[HBr]^{2}}{[H_{2}][Br_{2}]} = 1.9 \times 10^{19}$$

• At equilibrium, would you expect a higher concentration of reactants or products?

(equilibrium is far to the right)

Ē

Significance of *K*

• What does the magnitude of *K* tell us about the reaction at equilibrium?

$$N_2 + O_2 \rightleftharpoons 2 NO$$
 $K = \frac{[NO]^2}{[N_2][O_2]} = 4.1 \times 10^{-31}$

• At equilibrium, would you expect a higher concentration of reactants or products?

(equilibrium is far to the left)

K math rules

If you reverse the reaction (as written), invert K:

$$A + 2B \rightleftharpoons 3C \quad K_{forward} = \frac{[C]^3}{[A][B]^2}$$
$$3C \rightleftharpoons A + 2B \quad K_{reverse} = \frac{[A][B]^2}{[C]^3}$$
$$K_{reverse} = \frac{1}{K_{forward}}$$

≣♪

K math rules

If you multiply an equation by a factor, raise the equilibrium constant to the same factor:

$$\mathbf{A} + 2 \mathbf{B} \Longrightarrow 3 \mathbf{C} \quad K_{forward} = \frac{[C]^3}{[A][B]^2}$$

$$2 \times (\mathbf{A} + 2\mathbf{B} \rightleftharpoons 3\mathbf{C}) \qquad K' = \frac{[C]^6}{[A]^2[B]^4} = \left(\frac{[C]^3}{[A][B]^2}\right)^2$$

So,
$$K' = K_{\text{forward}}^2$$
.

≣♪

K math rules

If you add two equations to get an overall reaction, multiply the equilibrium constants to get the overall equilibrium constant:

r - 19

$$A \rightleftharpoons 2B \quad K_1 = \frac{[B]^2}{[A]}$$
$$2B \rightleftharpoons 3C \quad K_2 = \frac{[C]^3}{[B]^2}$$

$$\mathbf{A} \Longrightarrow \mathbf{3C} \quad K_{overall} = K_1 \times K_2 = \frac{[C]^3}{[A]}$$

K_c and K_p

- *K*_c refers to *K* with units of <u>molarity</u>
- *K_p* refers to *K* using the <u>partial pressure</u> of the gases in units of atmospheres:

$$aA(g) + bB(g) \Longrightarrow cC(g) + dD(g) \quad K_p = \frac{P_C^c P_D^a}{P_A^a P_B^b}$$

• The two are related to one another via the ideal gas law:

$$K_p = K_c (RT)^{\Delta n}$$

- Here: R = 8.314 J / (K mol) or 0.08206 L atm / (mol K)
- Δn = difference in total moles of <u>gas</u> (= gas moles in products minus gas moles in reactants)

Heterogeneous equilibria

- Heterogeneous: More than one state present (solid, liquid, gas)
- Remember: do not include pure solids or liquids in K

$$2 \operatorname{CO}(g) \rightleftharpoons \operatorname{CO}_2(g) + \operatorname{CO}_2(g)$$

$$K_{c} = \frac{[CO_{2}][\mathcal{O}]^{\checkmark}}{[CO]^{2}} = \frac{[CO_{2}]}{[CO]^{2}}$$

Heterogeneous equilibrium example

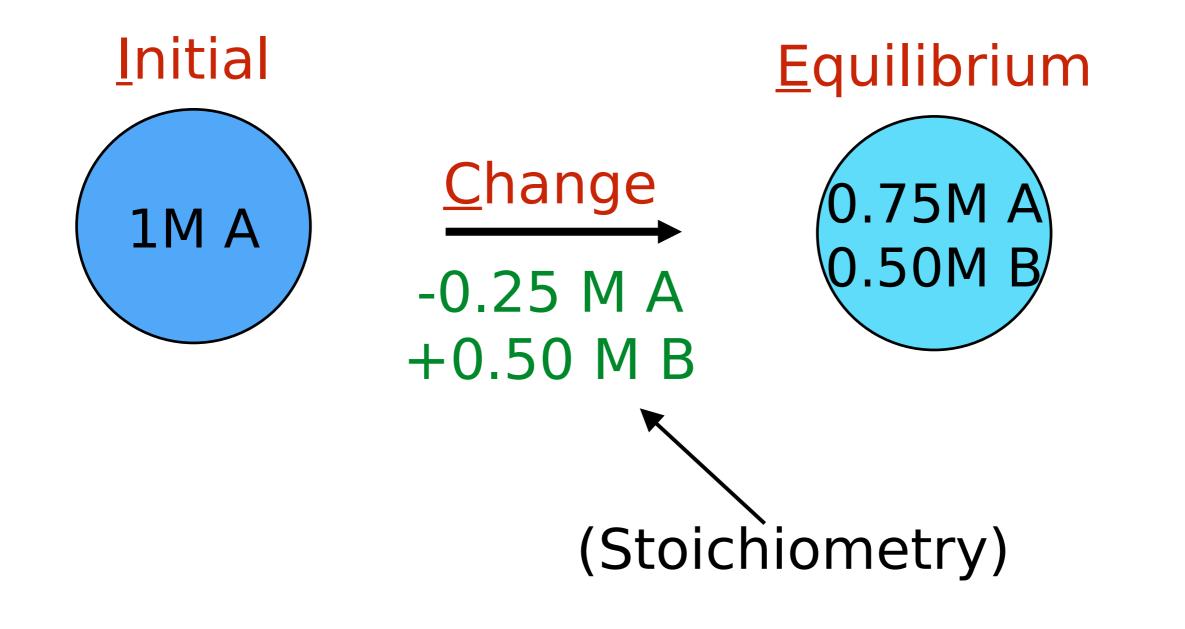
• Write *K* expression for:

 $\mathrm{CO}_2(\mathbf{g}) + \mathrm{H}_2\mathrm{O}(\ell) \rightleftharpoons \mathrm{H}^+(\mathbf{a}\mathbf{q}) + \mathrm{H}\mathrm{CO}_3^-(\mathbf{a}\mathbf{q})$

 $K_c = \frac{[H^+][HCO_3^-]}{[CO_2]}$

Concentration changes during a reaction to reach equilibrium

Given the following balanced reaction: $A(g) \rightleftharpoons 2 B(g)$



The Reaction Quotient, Q

- Given a set of conditions, can we predict which way the reaction will proceed?
- *Q* is defined the same way as *K*, except *Q* is the <u>actual</u> ratio of products to reactants under given conditions, <u>not</u> <u>necessarily at equilibrium</u>

$$aA + bB \rightleftharpoons cC + dD$$
 $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

K is always evaluated using equilibrium concentrations!

Q example

 $aA + bB \Longrightarrow cC + dD$

 $Q = \frac{[C]^c [D]^d}{[A]^a [B]^b}$

- Say you start a reaction with mostly reactants present
 - Q = 0
- Say you start a reaction with mostly products present
 - Q = large
- Say you have equilibrium concentrations of reactants and products
 - Q = K

Reaction quotient, Q

We can compare *Q* and *K* to determine

- Is the reaction at equilibrium?
- If not at equilibrium, which direction would the reaction need to proceed to reach equilibrium?

Relationship	Condition	Direction
Q = K	At equilibrium	At equilibrium (no change)
Q < K	Too little product / too much reactant	Toward products (to the right)
Q > K	Too much product / too little reactant	Toward reactants (to the left)

Reaction quotient, Q

Given the following concentrations, which way would the reaction proceed to try to reach equilibrium?

$$A \rightleftharpoons B \qquad \qquad K = \frac{[B]}{[A]} = 5 \qquad \qquad Q = \frac{[B]}{[A]}$$

Equilibrium concentrations!

[A] (M)	[B] (M)	Q	Reaction direction?
3.0	1.0		
1.0	1.0		
5.0	1.0		
3.0	1.5		

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

ICE Charts or ICE Tables (aka BRA Charts)

Set up a table to describe what will happen in the reaction

- Units are always M or atm (we should really be using Pascals...)
- Use Q to determine which way the reaction will proceed

	Α	4	В
Initial	Initial [A] (M)		Initial [B] (M)
<u>C</u> hange	Quantity changed in the reaction (M)		Quantity changed in the reaction (M)
<u>E</u> quilibrium	Equilibrium [A] (M)		Equilibrium [B] (M)

$A \rightleftharpoons B$

Ē

ICE Charts: Example 1

Given an initial set of conditions, and a value for *K*, can we determine the equilibrium concentrations?

$$\mathsf{A} \rightleftharpoons \mathsf{B} \qquad K = \frac{[B]}{[A]} = 5$$

	Α	1	В
Initial	1.0 (M)		0.0 (M)
<u>C</u> hange	-X		+ <i>x</i>
<u>E</u> quilibrium	1.0 - <i>x</i>		X

Plug in and solve:

$$K = \frac{[B]}{[A]} = 5 = \frac{x}{1-x}$$
$$5 - 5x = x$$
$$5 = 6x$$
$$x = 0.83$$

At equilibrium: [A] = 0.17 M = 1 - 0.83[B] = 0.83 M

ICE Charts: Example 2

$$A \rightleftharpoons B$$
 $K = \frac{[B]}{[A]} = 5$ $Q = \frac{[B]}{[A]} = \frac{1.0 \ M}{1.0 \ M} = 1$

	Α	+	В
Initial	1.0 (M)		1.0 (M)
<u>C</u> hange	-X		+ <i>x</i>
<u>E</u> quilibrium	1.0 - <i>x</i>		1.0 + <i>x</i>

$$K = \frac{1.0 + x}{1.0 - x} = 5$$

$$x = 0.67 \ M$$

At equilibrium: [A] = 0.33 M[B] = 1.67 M

Stoichiometry matters: Example 3

 $Cl_2(g) \rightleftharpoons 2 Cl(g), K = 0.2$ (not really, used for simplicity)

	Cl ₂ (g)	+	2 Cl(g)
<u>I</u> nitial	1.0 (M)		0.0 (M)
<u>C</u> hange	-X		+2 <i>x</i>
<u>E</u> quilibrium	1.0 - <i>x</i>		2 <i>x</i>

$K = \frac{[Cl]^2}{[Cl_2]}$
$0.2 = \frac{(2x)^2}{1-x} = \frac{4x^2}{1-x}$
$0.2 - 0.2x = 4x^2$
$4x^2 + 0.2x - 0.2 = 0$

Quadratic equation!!!

-4ac

2a

Quadratic Equation

For
$$ax^2 + bx + c = 0$$
 $x = \frac{-b \pm b}{-b}$

$$4x^2 + 0.2x - 0.2 = 0$$

$$x = \frac{-0.2 \pm \sqrt{0.2^2 - 4 \times 4 \times (-0.2)}}{2 \times 4}$$

x = 0.2 M or x = -0.25 M

Cannot have a negative concentration, so x = 0.2 M.

$$[CI_2] = 1.0 - x = 0.8 M$$
 $[CI] = 2x = 0.4 M$

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq) K = 4.3 \times 10^{-7}$

Multiple reactants/products: Example 4

	H₂CO₃(aq)	+	H+(aq)	HCO₃⁻(aq)
Initial	0.1 M		0 M	0 M
<u>C</u> hange	-X		+ <i>x</i>	+x
<u>E</u> quilibrium	0.1 - <i>x</i>		X	X

$$K = \frac{[H^+][HCO_3^-]}{[H_2CO_3]} = \frac{x^2}{0.1 - x} = 4.3 \times 10^{-7}$$
$$x = 0.000207 \ M$$

Ē

A shortcut for quadratic equations

If x < 5% of the term you compare it with, you can ignore it in the denominator to simplify the equation:

$$K = \frac{[H^+][HCO_3^-]}{[H_2CO_3]} = \frac{x^2}{0.1 - x} = 4.3 \times 10^{-7}$$
Assume x is small compared to 0.1

$$K = \frac{x^2}{0.1} = 4.3 \times 10^{-7}$$

Much easier to solve: x = 0.000207 M

<u>Must</u> test our assumption to see if it was valid

In the previous case, we assumed x < 5% of 0.1. Is this true?

$$\frac{0.000207 \text{ M}}{0.1 \text{ M}} \times 100\% = 0.21\%$$

In this case, we made a good assumption (0.21% < 5%)Notice that we got the same answer (within rounding).

Note: *x* is <u>not</u> zero, just small.

Method of successive approximations

$HF(aq) \rightleftharpoons H^+(aq) + F^-(aq)$	$K = 7.2 \times 10^{-4}$
---	--------------------------

	HF(aq)	÷	H+(aq)	F⁻(aq)
Initial	0.01 M		0 M	0 M
<u>C</u> hange	-X		+x	+ <i>X</i>
<u>E</u> quilibrium	0.01 - <i>x</i>		X	X

$$\frac{x^2}{0.01 - x} = 7.2 \times 10^{-4}$$

Method of Successive Approximations

$$\frac{x^2}{0.01 - x} = 7.2 \times 10^{-4}$$

$$\frac{x^2}{0.01} = 7.2 \times 10^{-4}$$

 $x = 0.00268 \ M$

 $\frac{0.00268~M}{0.01~M} \times 100\% = 27\%$

- Clearly, our assumption was bad, > 5 %!
- Cannot use this answer
- Must solve exactly with quadratic equation

$$\frac{x^2}{0.01 - x} = 7.2 \times 10^{-4}$$

 $x=0.00235\ M$

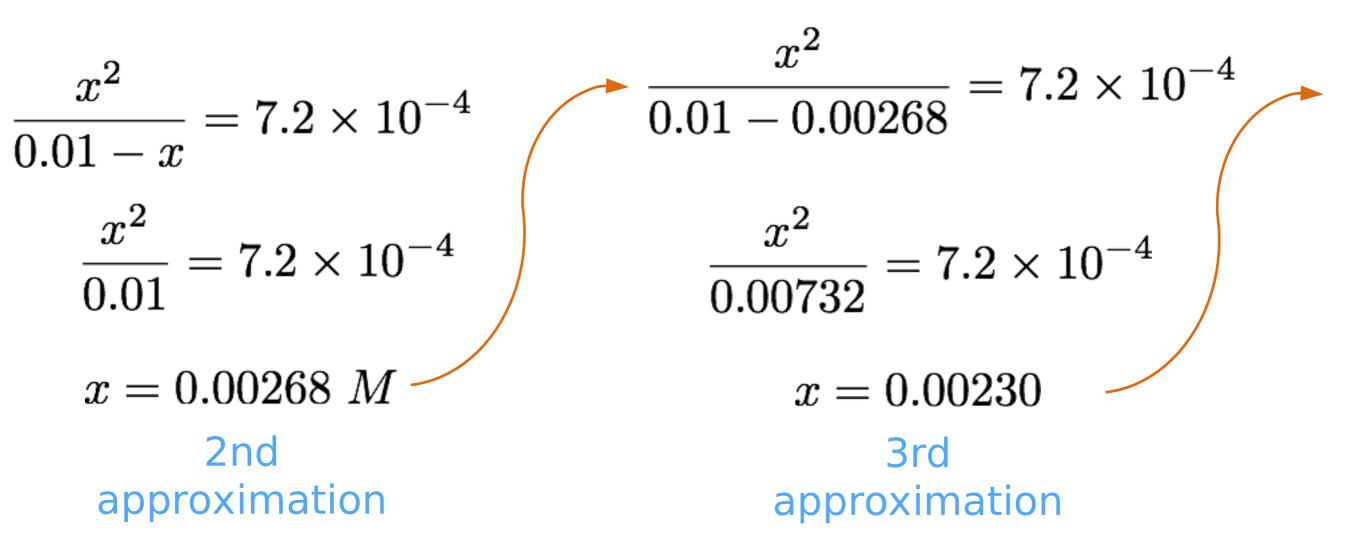
Method of Successive Approximations

- Quadratic equation slows down calculations
- Often it is also possible to obtain the solution by iteration: Take your answer from assuming *x* was small
 First approximation

$$\frac{x^2}{0.01 - x} = 7.2 \times 10^{-4}$$
$$\frac{x^2}{0.01} = 7.2 \times 10^{-4}$$
$$x = 0.00268 M$$

Method of successive approximations

Plug back into your equation and solve for *x* again:



Method of successive approximations

Plug back into your equation and solve for *x* again:

$$\frac{x^2}{0.01 - 0.00230} = 7.2 \times 10^{-4}$$
4th

 $x = 0.00236 \ M$ approximation

 $\frac{x^2}{0.01 - 0.00236} = 7.2 \times 10^{-4}$

 $x = 0.00230 \qquad x = 0.00235 \ M \qquad \text{5th}$
approximation

Usually within 3-5 iterations, x will be obtained with sufficient accuracy

Method of successive approximations

$HF(aq) \rightleftharpoons H^+(aq) + F^-(aq)$	$K = 7.2 \times 10^{-4}$
---	--------------------------

	HF(aq)	4	H+(aq)	F⁻(aq)
Initial	0.01 M		0 M	0 M
<u>C</u> hange	-X		+x	+ <i>X</i>
<u>E</u> quilibrium	0.01 - <i>x</i>		X	X

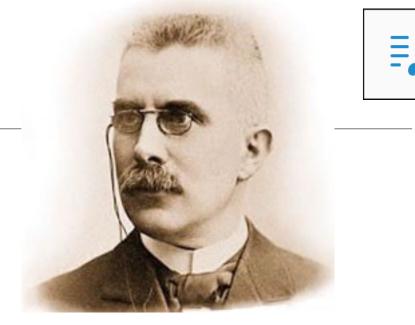
x = 0.00235 M

At equilibrium: $[H^+] = 0.002 \text{ M}$ $[HF] = 0.008 \text{ M} [F^-] = 0.002 \text{ M}$

(after rounding to correct sig. figs.)

Le Chatelier's Principle

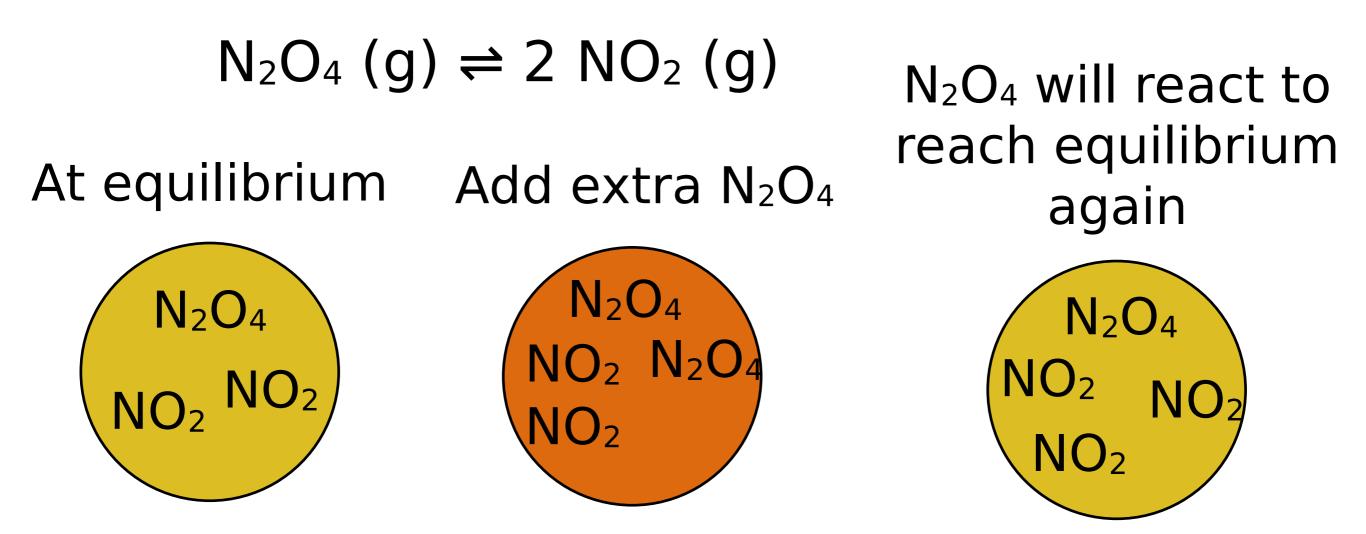
How does a system at equilibrium respond to disturbances?



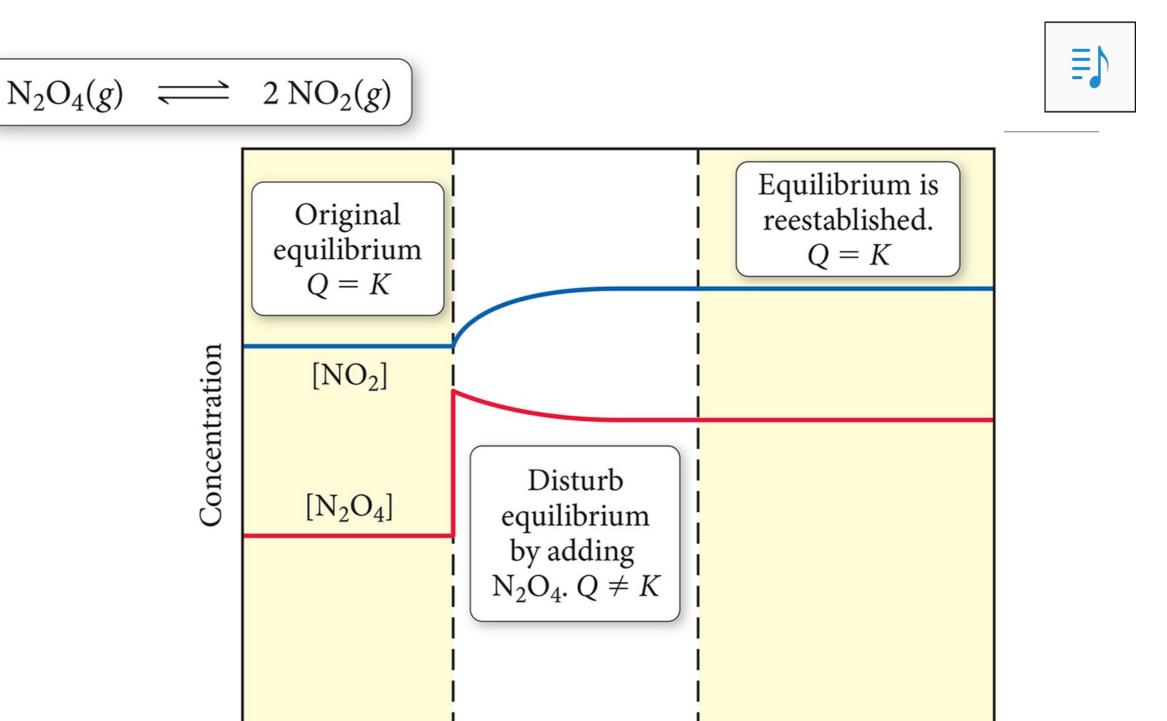
Henry Louis Le Châtelier 1850 - 1936

When a chemical system at equilibrium is disturbed, the system shifts in a direction that minimizes the disturbance.

Example - Changing concentration



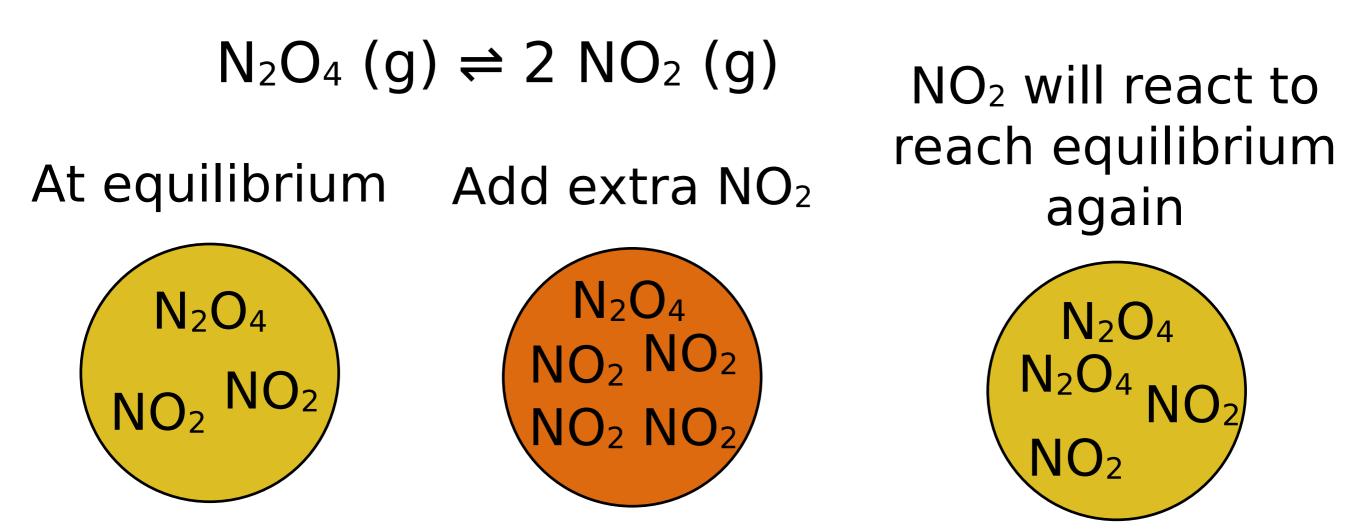
Adding a higher concentration of reactant will cause the equilibrium to shift right to attempt to reach equilibrium again (Q = K)



© 2017 Pearson Education, Inc.

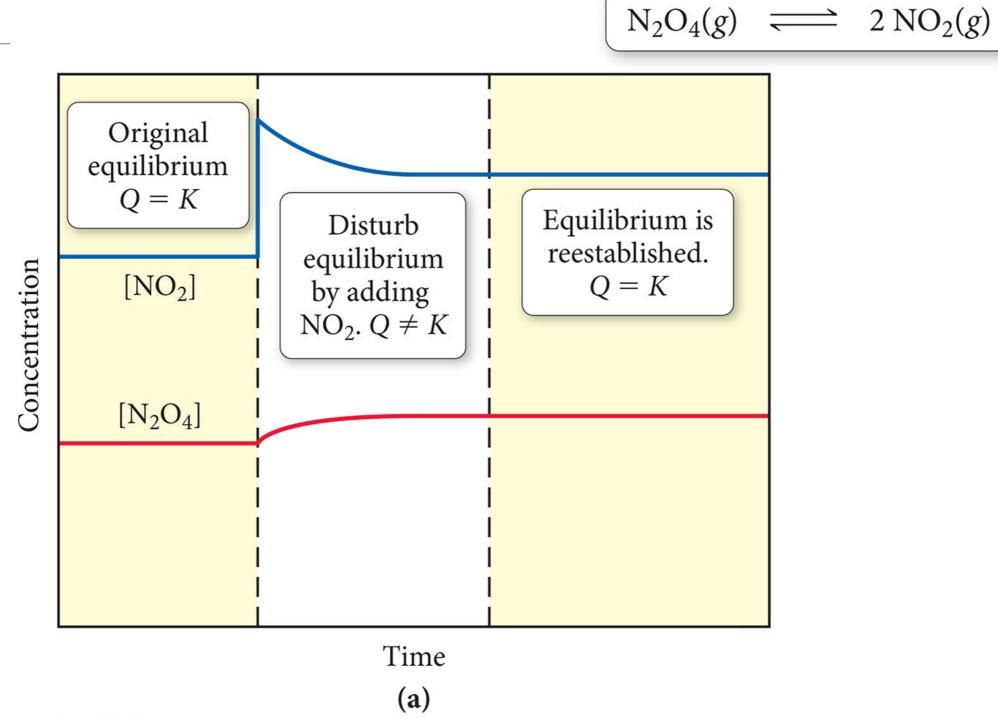
Concentration

Example - Changing concentration



 Adding a higher concentration of product will cause the equilibrium to shift left to attempt to reach equilibrium again (Q = K)

CALIFORNIA STATE UNIVERSITY NORTHRIDGE



© 2017 Pearson Education, Inc.

Effect of concentration change on equilibrium

- Increasing concentration of one or more reactant (Q < K) Reaction will shift right (toward products)
- Increasing concentration of one or more products (Q > K) Reaction will shift left (toward reactants)
- Decreasing concentration of one or more reactants (Q > K) Reaction will shift left (toward reactants)
- Decreasing concentration of one or more products (Q < K) Reaction will shift right (toward products)

K is constant, concentrations are changing such that $Q \rightarrow K$

Volume/Pressure changes in equilibrium

$H_2O(l) \rightleftharpoons H_2O(g)$



Higher *P*: Equilibrium shifts left (away from gas)

Lower *P*: Equilibrium shifts right (toward gas)

"Gas would like to occupy more space than liquid"

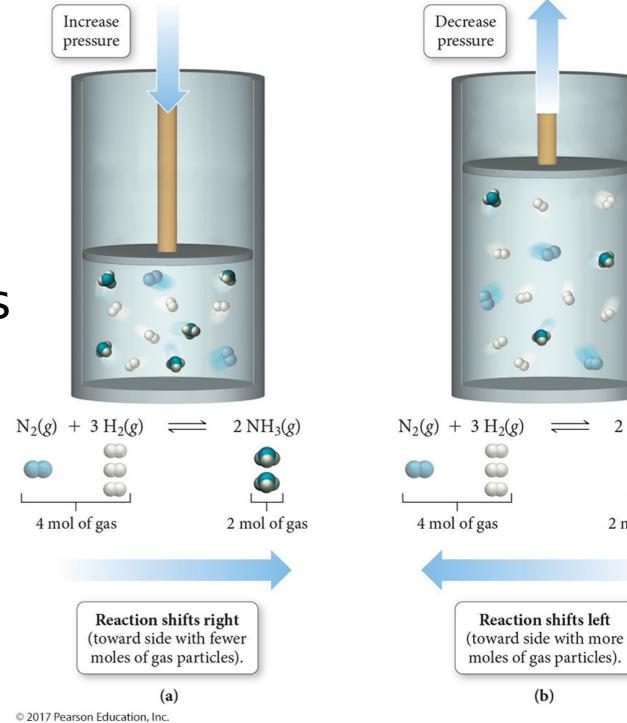
CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Volume/Pressure changes in equilibrium Le Châtelier's Principle: Changing Pressure

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

Higher P: Equilibrium shifts toward fewer moles of gas

Lower *P*: Equilibrium shifts toward more moles of gas



0

 $2 \text{ NH}_3(g)$

2 mol of gas

Effect of volume (or pressure) change on equilibrium

- Decreasing volume (increasing pressure) causes equilibrium to shift to fewer moles of gas particles
- Increasing volume (decreasing pressure) causes equilibrium to shift to more moles of gas particles
- If equal number of moles of gas on both sides of the reaction, change in volume or pressure has no effect
- Adding an inert gas to a mixture (at fixed volume) has no effect
- K is constant as long as T is constant

Le Chatelier's Principle and Temperature

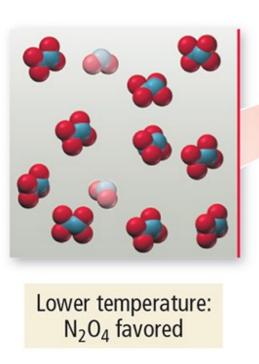
- Think of heat as a "reactant" or "product"
- Exothermic reaction: $A + B \rightleftharpoons C + D + "heat"$
- Endothermic reaction: A + B + "heat" ≓ C + D
- Adding or removing heat will change the equilibrium removing heat = lowering T adding heat = increasing T
- K is changing in this case, K = K(T).

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

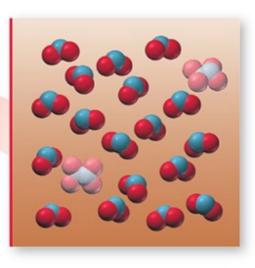
Le Châtelier's Principle: Changing Temperature

$$N_2O_4(g)$$
 + heat $\implies 2 NO_2(g)$
colorless brown

Endothermic reaction



© 2017 Pearson Education, Inc.



Higher temperature: NO₂ favored

Le Chatelier's Principle and Temperature

- Increasing temperature: Exothermic reaction shifts toward reactants
- Increasing temperature: Endothermic reaction shifts toward products
- Decreasing temperature: Exothermic reaction shifts toward products
- Decreasing temperature: Endothermic reaction shifts toward reactants
- Adding heat favors endothermic reaction
- Removing heat favors exothermic reaction

General tips for this section

• Understand definitions:

Dynamic equilibrium, how rates relate, equilibrium constant, K_c vs. K_p , reversibility, etc.

• Understand Q vs. K:

Which way will the reaction proceed?

- Understand ICE charts be able to solve any ice chart:
 - May need quadratic equation or successive approx.
 - Understand the 5 % validity test
- Le Chatelier's principle: concentration change, pressure/ volume change, temperature change.

51

Additional example #1

What is the value of K_c for the reaction

 $2 \operatorname{CH}_4(g) \rightleftharpoons \operatorname{C}_2\operatorname{H}_2(g) + 3 \operatorname{H}_2(g)$

if we start with only CH_4 , the initial $[CH_4]$ is 0.300 M and the equilibrium $[C_2H_2] = 0.045$ M?

Note, we have a mixture of some initial and some equilibrium concentrations.

The best way to answer this problem is using an **ICE table.**

1. First set up the ICE table and add the values in the problem

$2 CH_4(g) \rightleftharpoons C_2H_2(g) + 3 H_2(g)$				
	$[CH_4]$	$[C_2H_2]$	[H ₂]	
Initial	0.300 M	0.000 M	0.000 M	
Change				
Equilibrium		0.045 M		

2. For a substance whose initial and equilibrium concentrations are known, complete 'change'

$$2 \operatorname{CH}_4(g) \rightleftharpoons \operatorname{C}_2\operatorname{H}_2(g) + 3 \operatorname{H}_2(g)$$

	[CH ₄]	$[C_2H_2]$	[H ₂]
Initial	0.300 M	0.000 M	0.000 M
Change		+0.045 M	
Equilibrium		0.045 M	

Signs are

Additional example #1

3. Use reaction stoichiometry to complete the rest of the 'change' row

$$(2)CH_4(g) \rightleftharpoons C_2H_2(g) + (3)H_2(g)$$

				_ important!
	$[CH_4]$	$[C_2H_2]$	[H ₂]	
Initial	0.300	0.000	0.000	
Change	-0.090	2 +0.045 🔀	+0.135	
Equilibrium		0.045		

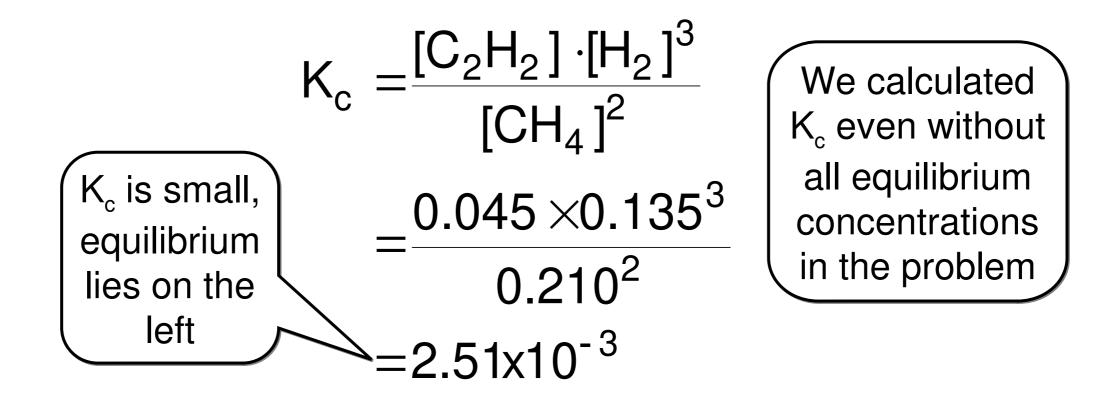
4. Sum each column to find the equilibrium concentrations of all substances

$$2 \operatorname{CH}_4(g) \rightleftharpoons \operatorname{C}_2\operatorname{H}_2(g) + 3 \operatorname{H}_2(g)$$

	$[CH_4]$	$[C_2H_2]$	[H ₂]
Initial	0.300	0.000	0.000
Change	-0.090	+0.045	+0.135
Equilibrium	_0.210	0.045	= 0.135

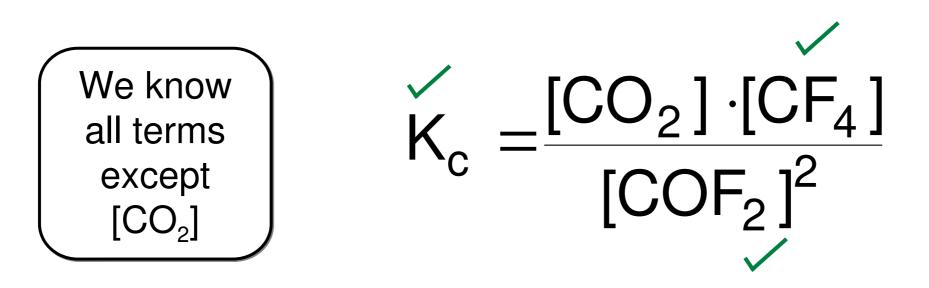
5. Finally, use the equilibrium concentrations to calculate K_c

$$2 \operatorname{CH}_4(g) \rightleftharpoons \operatorname{C}_2\operatorname{H}_2(g) + 3 \operatorname{H}_2(g)$$



When given K_c and all but one of the equilibrium concentrations, what is the equilibrium $[CO_2]$ in the reaction: $2 COF_2(g) \rightleftharpoons CO_2(g) + CF_4(g)$

if $K_c = 2.00$ at 1000 °C, the equilibrium $[COF_2] = 0.255$ M and equilibrium $[CF_4] = 0.118$ M?



To solve, simply rearrange the K_c equation

$$K_{c} = \frac{[CO_{2}] \cdot [CF_{4}]}{[COF_{2}]^{2}}$$

$$[CO_{2}] = \frac{K_{c} \cdot [COF_{2}]^{2}}{[CF_{4}]}$$

$$[CO_{2}] = \frac{K_{c} \cdot [COF_{2}]^{2}}{[CF_{4}]}$$

$$= \frac{2.00 \times (0.255 \text{ M})^{2}}{0.118 \text{ M}}$$

$$= 1.10 \text{ M}$$

8 M

What is the equilibrium concentration of H_2 for the reaction:

 $2 H_2S(g) \rightleftharpoons 2 H_2(g) + S_2(g)$

if $K_c = 1.67 \times 10^{-7}$ at 800 °C and the reaction initially contains only 0.0125 mol H₂S in a 0.500 L flask?

- The initial $[H_2S]$ is 0.0125 mol/0.500 L = 0.025 M
- Notice $K_c = 1.67 \times 10^{-7}$ is very small compared with the initial [H₂S]
- We expect the [H₂S] to change only very slightly from its initial conditions and we can ignore this change in calculations this simplifies the algebra
- Next, set up an ICE table

$2 H_2S(g) \rightleftharpoons 2 H_2(g) + S_2(g)$

	$[H_2S]$	[H ₂]	[S ₂]	$[H_2S]$
Initial	0.025	0.000	0.000	decreases and $[H_2]$ and
Change	-2 <i>x</i>	+2 <i>x</i>	+ <i>X</i>	$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$ [S ₂] increase $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ as the system
Equilibrium	0.025-2 <i>x</i>	+2 <i>x</i>	+ <i>X</i>	approaches

Next, solve for '*x*'

lf x

it in

$$K_{c} = \frac{[H_{2}]^{2} \cdot [S_{2}]}{[H_{2}S]^{2}}$$

$$1.67 \times 10^{-7} = \frac{(2x)^{2} \cdot x}{(0.0250 - 2x)^{2}}$$

$$= \frac{4x^{3}}{(0.0250 \cdot 2x)^{2}}$$
A cubic equation that is difficult to solve!
If **x** is small, we can ignore it in the denominator of this equation

$$1.67 \times 10^{-7} = \frac{4x^3}{(0.0250)^2} = \frac{4x^3}{6.25 \times 10^{-4}}$$

$$x^3 = \frac{1.67 \times 10^{-7} \times 6.25 \times 10^{-4}}{4}$$

$$x = 2.97 \times 10^{-4}$$
No need to solve a cubic equation!
The equilibrium [H₂] = 2 \cdot x = 5.94 \times 10^{-4} M

• If this value is < 5% of the initial concentration, the assumption error is small and the method is acceptable (in this case 2.4%)

Consider heterogeneous equilibrium:

 $MgCO_3(s) \rightleftharpoons MgO(s) + CO_2(g)$ with $K_p = 0.026$

When the system is compressed from 10.0 L to 0.1 L at constant temperature of 650 K, how many grams of MgCO₃(s) is formed? Assume that CO₂ can be treated as an ideal gas and sufficient amounts of both solids are present.

1. Before compression: $V_1 = 10.0 \text{ L}$, $P_1 = 0.026 \text{ atm}$ (from $K_p = P_{CO2}$), and T = 650 K. Ideal gas law: $n_1 = \frac{P_1 V_1}{RT} = \frac{(2634.5 \text{ Pa})(0.01 \text{ m}^3)}{(8.314 \text{ J/(mol K)})(650 \text{ K})} = 4.875 \times 10^{-3} \text{ mol}$

2. After compression: $V_2 = 0.100 \text{ L}$, $P_2 = 0.026 \text{ atm}$ (from $K_p = P_{co2}$), and T = 650 K. Ideal gas law: $n_2 = \frac{P_2 V_2}{RT} = \frac{(2634.5 \text{ Pa})(0.0001 \text{ m}^3)}{(8.314 \text{ J/(mol K)})(650 \text{ K})} = 4.875 \times 10^{-5} \text{ mol}$

3. The number of moles of CO_2 consumed:

$$\Delta n = n_2 - n_1 = -4.826 \times 10^{-3} \text{ mol}$$

Based on the stoichiometry, this also gives the number of moles of MgCO₃(*s*) formed (4.826x10⁻³ mol). The mass is:

$$m = (4.826 \times 10^{-3} \text{ mol}) \times (84.3139 \frac{\text{g}}{\text{mol}}) = 0.41 \text{ g}$$

(molar mass of MgCO₃ is 84.3130 g/mol)