Chapter 17: Acids and Bases I

Chem 102 Jussi Eloranta

Acids and Bases

<u>Acids</u>

- Sour taste (vinegar)
- Dissolve many metals
- Ability to neutralize bases
- Strong or Weak

<u>Bases</u>

Bitter taste

(caffeine, poisons from plants - alkaloids)

- Slippery feel
- Ability to neutralize acids
- Strong or Weak

• Definitions: Arrhenius, Bronsted-Lowry, Lewis

Common acids

TABLE 16.1 Some Common Acids									
Name	Occurrence/Uses								
Hydrochloric acid (HCI)	Metal cleaning; food preparation; ore refining; primary component of stomach acid								
Sulfuric acid (H ₂ SO ₄)	Fertilizer and explosives manufacturing; dye and glue production; in automobile batteries; electroplating of copper								
Nitric acid (HNO ₃)	Fertilizer and explosives manufacturing; dye and glue production								
Acetic acid $(HC_2H_3O_2)$	Plastic and rubber manufacturing; food preservation; active component of vinegar								
Citric acid (H ₃ C ₆ H ₅ O ₇)	In citrus fruits such as lemons and limes; used to adjust pH in foods and beverages								
Carbonic acid (H ₂ CO ₃)	In carbonated beverages due to the reaction of carbon dioxide with water								
Hydrofluoric acid (HF)	Metal cleaning; glass frosting and etching								
Phosphoric acid (H ₃ PO ₄)	Fertilizer manufacturing; biological buffering; beverage preservation								

© 2017 Pearson Education, Inc.

STATE UNIVERSITY NORTHRIDGE

CALIFORNIA

Ē

Common bases

			and the second state of th
TADIE	16 2	Common	Pacac
IADLE	10.2	CONTINUE	Dases

Name	Occurrence/Uses				
Sodium hydroxide (NaOH)	Petroleum processing; soap and plastic manufacturing				
Potassium hydroxide (KOH)	Cotton processing; electroplating; soap production; batteries				
Sodium bicarbonate (NaHCO ₃)	Sold as baking soda; antacid; source of CO ₂				
Sodium carbonate (Na ₂ CO ₃)	Glass and soap manufacturing; general cleanser; water softener				
Ammonia (NH ₃)	Detergent; fertilizer and explosives manufacturing; synthetic fiber production				

© 2017 Pearson Education, Inc.

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Arrhenius Definition

- Acid: A substance that produces H⁺ ions in aqueous solution
- Base: A substance that produces OH⁻ (hydroxide) ions in aqueous solution

HCl(aq) →H⁺(aq) + Cl⁻(aq) NaOH(aq) →Na⁺(aq) + OH⁻(aq) Svante Arrhenius 1859-1927 Sweden

Ē

Hydronium ion

- The H⁺ ion is a proton
- In reality, the H⁺ ion always associates with water molecules as H(H₂O)_n⁺

- Often said to be H_3O^+ , the hydronium ion
- Chemists use H^+ and H_3O^+ interchangeably

Acid-base neutralization

• Arrhenius:

Acids and bases react to form water, a neutral compound

$\mathsf{H}^+(aq) + \mathsf{OH}^-(aq) \rightarrow \mathsf{H}_2\mathsf{O}(I)$

Warning: Neutralization reactions can release lot of heat!

SUN ST

CALIFORNIA TATE UNIVERSITY NORTHRIDGE

Brønsted-Lowry Definition

- Acid: Proton (H⁺) donor
- Base: Proton (H⁺) acceptor

Martin Lowry Johannes Brønsted

HCl(aq) + H₂O(/) → H₃O⁺(aq) + Cl⁻(aq) Bronsted-Lowry Base Bronsted-Lowry Acid

 $\begin{array}{c} \mathsf{NH}_3(aq) + \mathsf{H}_2\mathsf{O}(I) \rightleftharpoons \mathsf{NH}_4^+(aq) + \mathsf{OH}^-(aq) \\ & \uparrow \\ & \mathsf{Bronsted-Lowry\ Acid} \\ & \mathsf{Bronsted-Lowry\ Base} \end{array}$

Polyprotic acids and bases

- Polyprotic acids: Can donate two or more protons
- Polyprotic bases: Can accept two or more protons

Example: H₂SO₄ (sulfuric acid)

 $H_2SO_4(aq) + H_2O(\ell) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$ (1)

 $HSO_4^{-}(aq) + H_2O(\ell) \longrightarrow H_3O^{+}(aq) + SO_4^{2-}(aq)$ (2)

(produces two H_3O^+ in a sequence)

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Carboxylic acids

Organic molecules with a -COOH group:

Amphoteric compounds

 They can act as either Bronsted-Lowry acids or bases (for example, water):

 $H_2PO_4^{-}(aq) + H_2O(\ell) \Longrightarrow HPO_4^{2-}(aq) + H_3O^{+}(aq)$

 $H_2PO_4^{-}(aq) + H_2O(\ell) \Longrightarrow H_3PO_4(aq) + OH^{-}(aq)$

Bronsted-Lowry Conjugate Acids and Bases

$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

Forward: $NH_3(aq) + H_2O(I) \rightarrow NH_4^+(aq) + OH^-(aq)$ Bronsted-Lowry Acid Bronsted-Lowry Base

Reverse: $NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(aq) + H_2O(/)$ Bronsted-Lowry Base Bronsted-Lowry Acid

Conjugate Acid-Base Pairs

$NH_3(aq) + H_2O(I) \Rightarrow NH_4^+(aq) + OH^-(aq)$

- Base accepts a proton and becomes an acid in the reverse reaction (conjugate acid).
- Acid donates a proton and becomes a base in the reverse reaction (conjugate base).

Ē

Conjugate Acid-Base Pairs

$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

© 2017 Pearson Education, Inc.

Example 1

Identify the Bronsted-Lowry acid and base and their conjugates in the following reaction:

- Forward: H_2SO_4 (acid) donates H^+ to H_2O (base).
- Reverse: H_3O^+ (acid) donates H^+ to HSO_4^- (base).

₽

Example 2

Identify the Bronsted-Lowry acid and base and their conjugates in the following reaction:

- Forward: H_2O (acid) donates H^+ to HCO_{3^-} (base).
- Reverse: H₂CO₃ (acid) donates H⁺ to OH⁻ (base).

Example 3

Identify the Bronsted-Lowry acid and base and their conjugates in the following reaction:

- Forward: H_2O (acid) donates H^+ to CH_3NH_2 (base).
- Reverse: $CH_3NH_3^+$ (acid) donates H^+ to OH^- (base).

Lewis Acids and Bases

- Lewis model focuses on the electrons instead of the protons
- Lewis acid: Accepts electron pairs
- Lewis base: Donates electron pairs
- Lewis acid: Has an empty orbital (or can rearrange electrons to create an empty orbital) that can accept an electron pair

CO₂ rearrange & accept

CALIFORNIA

Acid strength

- Strong acid: Completely ionizes in solution
- Weak acid: Partially ionizes in solution
- The 6 strong acids (memorize)

TABLE 16.3 Strong Acids	
Hydrochloric acid (HCI)	Nitric acid (HNO ₃)
Hydrobromic acid (HBr)	Perchloric acid (HClO ₄)
Hydriodic acid (HI)	Sulfuric acid (H ₂ SO ₄) (<i>diprotic</i>)

© 2017 Pearson Education, Inc.

Ē

Strong acid

Completely dissociates as ions in aqueous solution:

$$HCl(aq) + H_2O(\ell) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

$$Forward arrow only$$

- A solution that is "1.0 M HCl" is actually 1.0 M H_3O^+ and 1.0 M Cl^-
- Practically no undissociated HCI exists in the solution.

Weak acid

Partially dissociates into ions in aqueous solution establishing equilibrium:

$HF(aq) + H_2O(\ell) \Longrightarrow H_3O^+(aq) + F^-(aq)$ Equilibrium arrows

For example, a solution that is "1.0 M HF":

- Some of the HF dissociates, but some (usually most) stays as HF in the solution
- Some H₃O⁺ is formed
- Need to solve equilibrium problem (ICE table)

Acid ionization constant, K_a (dissociation constant)

How do we determine the concentrations of a weak acid at equilibrium?

Generic weak acid reaction:

$$HA(aq) + H_2O(\ell) \Longrightarrow H_3O^+(aq) + A^-(aq)$$

or
$$HA(aq) \Longrightarrow H^+(aq) + A^-(aq)$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{[H^+][A^-]}{[HA]}$$

Remember: No pure liquids in equilibrium expression!

Ē

Example

Write the acid dissociation expression (K_a) for the following reaction:

 $HNO_2(aq) + H_2O(\ell) \Longrightarrow H_3O^+(aq) + NO_2^-(aq)$

$K_a = \frac{[H_3O^+][NO_2^-]}{[HNO_2]}$

Note: H_2O is pure liquid and not included!

Range of K_a values

• For a strong acid, K_a is very large (∞):

Use one arrow to indicate that there is essentially zero reactant left after the reaction

• For weak acids, *K_a* can vary depending on the "strength" of the acid:

Set up as an equilibrium

Weak Acid	Formula	Ka			
Hydrofluoric acid	HF	1.8 x 10 ⁻⁴			
Acetic acid	$HC_2H_3O_2$	1.8 x 10 ⁻⁵			
Hydrocyanic acid	HCN	4.9 x 10 ⁻¹⁰			

Ē

Autoionization of water

Recall that water can act as an acid or a base (amphoteric):

$$\begin{split} \mathrm{HCl}(\mathrm{aq}) + \mathrm{H_2O}(\ell) &\longrightarrow \mathrm{H_3O^+}(\mathrm{aq}) + \mathrm{Cl^-}(\mathrm{aq}) \\ \\ & \mathsf{base} \end{split}$$

$\operatorname{NH}_{3}(\operatorname{aq}) + \operatorname{H}_{2}O(\ell) \rightleftharpoons \operatorname{NH}_{4}^{+}(\operatorname{aq}) + \operatorname{OH}^{-}(\operatorname{aq})$ acid

Autoionization of water

• Even by itself, in pure water, H_2O can react with itself; autoionization:

$H_2O(\ell) + H_2O(\ell) \Longrightarrow H_3O^+(aq) + OH^-(aq)$ $H_2O(\ell) \Longrightarrow H^+(aq) + OH^-(aq)$

• This reaction has a special equilibrium constant, K_w "ion product constant" or "autoionization constant"

$$K_w = [H_3O^+][OH^-] = [H^+][OH^-]$$

≣♪

<u>Pure</u> water

 For pure water, H₂O is the only source of H⁺ or OH⁻, so they must have equal concentrations:

For every H⁺ produced, there must be an OH⁻ (neutral)

• At 25 °C (*), $K_w = 1.0 \times 10^{-14}$, therefore:

$$K_w = 1.0 \times 10^{-14} = [H^+][OH^-] = x^2$$

 $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$

*Use in this class, assume this temperature for acids & bases unless otherwise noted.

Acidic solution

- [H⁺] > [OH⁻] $K_w = 1.0 \times 10^{-14} = [H^+][OH^-]$
- Product of [H⁺] times [OH⁻] must equal 1.0 x 10⁻¹⁴
- Example: if $[H^+] = 1.0 \times 10^{-6} \text{ M}$, $[OH^-]$ must be $1.0 \times 10^{-8} \text{ M}$

Try filling out the table below:

[H+] (M)	[OH ⁻] (M)	Product
1.0 x 10 ⁻⁵		1.0 x 10 ⁻¹⁴
1.0 x 10 ⁻⁴		1.0 x 10 ⁻¹⁴
2.5 x 10 ⁻⁵		1.0 x 10 ⁻¹⁴
	3.7 x 10 ⁻⁸	1.0 x 10 ⁻¹⁴

Basic solution

- [OH⁻] > [H⁺] $K_w = 1.0 \times 10^{-14} = [H^+][OH^-]$
- Product of [H⁺] times [OH⁻] must equal 1.0 x 10⁻¹⁴
- Example: if $[H^+] = 1.0 \times 10^{-8} \text{ M}$, $[OH^-]$ must be 1.0 x 10⁻⁶ M

Try filling out the table below:

[H+] (M)	[OH ⁻] (M)	Product
	1.0 x 10 ⁻³	1.0 x 10 ⁻¹⁴
	1.0 x 10 ⁻⁵	1.0 x 10 ⁻¹⁴
	8.5 x 10 ⁻⁶	1.0 x 10 ⁻¹⁴
6.2 x 10 ⁻⁸		1.0 x 10 ⁻¹⁴

pH scale

- It is annoying to have to keep writing these low concentrations using scientific notation.
- Using the pH scale helps:

"*p*" = -log

$$pH = -log[H_3O^+] = -log[H^+]$$
$$pOH = -log[OH^-]$$

Conversion: $10^{-pH} = [H^+]$ or $10^{-pOH} = [OH^-]$

In this class: $\log = 10$ -based, $\ln = e$ -based.

A word about sig. figs. and logarithms

For logarithms, exponents $n = 10^a \Leftrightarrow log(n) = a$ log(12.0) = 1.0791812... characteristic mantissa $10^{1.0792...} = 12.0$

<u>Log</u>: Number of digits in mantissa of log x is number of significant figures in x: log(12.0) = 1.079 (3 sf. for mantissa).

Exponent: Number of digits in 10^{\times} is number of significant figures in mantissa of x: $10^{2.3456} = 2.216 \times 10^{2}$ (4 sf. for mantissa).

A word about sig. figs. and logarithms

To exemplify:

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

≣♪

pH of pure water

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

 $pK_w = pH + pOH = 14$

For pure water:

$$[H^+] = [OH^-] = 1.0 \times 10^{-7} M$$

$$pH = -log[H^+] = -log(1.0 \times 10^{-7} M) = 7$$

$$pOH = -log[OH^{-}] = -log(1.0 \times 10^{-7} M) = 7$$

pH scale

- Pure water (neutral): pH = 7 (at 25 °C)
- Acidic solution: pH < 7 (or pOH > 7)
- Basic solution: pH > 7 (or pOH < 7)
- Change in <u>1 pH unit</u> is a change in [H⁺] of a <u>factor of 10</u> <u>M units</u>

"logarithmic" scale:

© 2017 Pearson Education, Inc.

pH of acid solutions

Acidic solutions: pH < 7 ([H⁺] > 1 x 10⁻⁷ M)

Example:
$$[H^+] = 1.0 \times 10^{-6} M \Rightarrow pH = 6.00$$

Try filling out the table below:

[H+] (M)	[OH ⁻] (M)	рН
1.0 x 10 ⁻⁵		
1.0 x 10 ⁻⁴		
2.5 x 10 ⁻⁵		
	3.7 x 10 ⁻⁸	

pH of basic solutions

Basic solutions: pH > 7 ([H⁺] < 1 x 10⁻⁷ M)

Example:
$$[H^+] = 1.0 \times 10^{-8} M \Rightarrow pH = 8.00$$

Try to fill out the table below:

[H+] (M)	[OH ⁻] (M)	рН
	1.0 x 10 ⁻³	
	1.0 x 10 ⁻⁵	
	8.5 x 10 ⁻⁶	
6.2 x 10 ⁻⁸		

pOH scale

- Sometimes it is easier to calculate pOH first, then pH
- Sometimes it is easier to convert concentrations first
- Remember: they are related to each other

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

 $pK_w = pH + pOH = 14$

\langle	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
Ac	Acidic											Basic			
\langle	14.0	13.0	12.0	11.0	10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0
								рОН							

© 2017 Pearson Education, Inc.

Note: pH can be negative (e.g., $[H^+] = 3.0 \text{ M}$)!

Tips for this section

- Learn the definitions:
 - Arrhenius Acid/Base, Bronsted-Lowry Acid/Base, Lewis Acid/Base
 - Memorize the six strong acids
- Be able to predict what might be an acid or base:
 - Think about what happens in aqueous solution
 - e.g. HCI, NaOH, or carboxylic acid
- Be able to identify the conjugate acid/base pairs in a reaction
- Practice pH calculations!