Chapter 18: Aqueous Ionic Equilibria II

Acid-base titrations

Chem 102 Jussi Eloranta

Acid-Base titrations

- In an acid-base titration, an acid (or base) of known quantity and concentration is reacted with a base (or acid) of unknown concentration
- The **endpoint** or **equivalence point** is reached when an added indicator just changes color
- Care must be taken not to exceed the endpoint where the acid is exactly neutralized by the base.
- Usually the amount of (known concentration) titrant added to the solution is used to determine the (unknown) concentration of the solution.
- The titrant is usually in the burette.

2

Acid-Base titrations

- At the endpoint, enough titrant has been added to exactly **neutralize** the solution: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$
- At the endpoint the added H⁺ and OH⁻ moles are equal.
- Note that the endpoint pH is not necessarily 7!

Indicator changes color

Titration calculations

- Relate moles to moles because the volume is changing!
- An indicator or measurement of pH will allow you to determine the <u>equivalence point:</u>

the point in the titration when added

moles of acid = moles of base

where neither acid nor base are in excess

• Determine the concentration of the unknown acid or base:

$$M_1V_1 = M_2V_2 \longleftarrow \left(\frac{mol}{L}\right)(L) = \left(\frac{mol}{L}\right)(L) \longleftarrow mol = mol$$

Types of Acid-Base titrations

Titrant should be chosen either a <u>strong acid</u> or a <u>strong</u> <u>base</u>:

- 1. Strong Acid with Strong Base
- 2. Strong Base with Strong Acid
- 3. Weak Acid with Strong Base
- 4. Weak Base with Strong Acid

Four types of acid-base titrations

8

Titration of strong acid with strong base

Example. Consider titration of 50.0 mL of 0.200 M HNO_3 (strong acid) with 0.100 M NaOH (strong base).

Overview:

- Net reaction: $H_3O^+(aq) + OH^-(aq) \rightarrow 2H_2O(I)$
- Equivalence point pH = 7 (only for strong acid – strong base)
- Very large change in pH near the equivalence point
- Before equivalence point the pH depends on excess of strong acid
- After equivalence point the pH depends on excess of strong base

titrant (in buret)

CALIFORNIA

SUN CALIFORNIA STATE UNIVERSIT NORTHRIDGE

Titration of strong acid with strong base

1. Equivalence point

NaOH neutralizes all HNO₃: moles acid = moles base Initial moles $HNO_3 = (0.200 \text{ mol}/L)(0.0500 \text{ }L) = 0.01 \text{ moles}$ Therefore 0.01 mol of NaOH needed to neutralize. $(0.0100 \text{ mol } NaOH)(\frac{1 \text{ }L}{0.100 \text{ mol}}) = 0.100 \text{ }L = 100 \text{ }mL$ of NaOH

Alternatively, you could use this formula directly:

$$\begin{aligned} M_a V_a &= M_b V_b \\ V_b &= \frac{M_a V_a}{M_b} = \frac{(0.200 \ M)(50.0 \ mL)}{0.100 \ M} = 100 \ mL \ NaOH \end{aligned}$$

2. Initial pH before adding any NaOH:

$$pH = -log([H^+]) = -log(0.200 M) = 0.70$$

Remember that HNO_3 is a strong acid and dissociates fully in water.

<u>3. pH after adding 25.0 mL of NaOH</u>

Moles of NaOH added = moles of OH^{-} added = (0.0250 L)(0.100 mol/L) = 0.0025 mol.

(moles)	H₃O+(<i>aq</i>)	+	OH ⁻ (aq)	\rightarrow	2 H ₂ O(/)
Before	0.010				
Addition			0.0025		
After	0.010 - 0.0025 = 0.008		0		

So, 0.008 moles of H_3O^+ remain in the solution.

New volume = 50.0 mL + 25.0 mL = 75.0 mL.

 $[H_3O^+] = 0.008 \text{ mol} / 0.0750 \text{ L} = 0.1 \text{ M}$

and therefore pH = 1.0.

This is larger than the initial pH 0.70, which is expected as we are adding base.

<u>4. pH after adding total of 50.0 mL NaOH</u>

- Moles of NaOH added = $(0.0500 \text{ L})(0.100 \text{ mol/L}) = 0.005 \text{ moles of OH}^{-}$ added.
- So, 0.010 0.005 = 0.005 moles of H₃O⁺ remain after neutralization.
- New volume = 50.0 mL + 50.0 mL = 100.0 mL.
- $[H_3O^+] = 0.0050 \text{ mol} / 0.100 \text{ L} = 0.05 \text{ M}$
- and hence pH = 1.30 (increases).

5. pH after adding total of 75.0 mL NaOH

- Moles of NaOH added = $(0.0750 \text{ L})(0.100 \text{ mol/L}) = 0.0075 \text{ moles OH}^{-}$ of added.
- So, 0.010 0.0075 = 0.0025 moles of H₃O⁺ remain after neutralization.
- New volume = 50.0 mL + 75.0 mL = 125.0 mL.
- $[H_3O^+] = 0.0025 \text{ mol} / 0.125 \text{ L} = 0.02 \text{ M}$
- and hence pH = 1.70 (increases).

Summary so far:

Vol NaOH added (mL)	рН
0.00	0.70
25.0	1.00
50.0	1.30
75.0	1.70

6. pH after adding 100.0 mL of NaOH (equiv. Point)

- Moles of NaOH added = $(0.100 \text{ L})(0.100 \text{ mol/L}) = 0.010 \text{ moles of OH}^{-}$ added.
- So, 0.010 0.010 = 0.000 moles of H₃O⁺ remain (all neutralized).
- New volume = 50.0 mL + 100.0 mL = 150.0 mL.
- $[H_3O^+] = 1.0 \times 10^{-7} M$ (from autoionization).

pH = 7 (only neutral for strong acid – strong base titration).

Titration of strong acid with strong base

Summary so far:

Vol NaOH added (mL)	рН
0.00	0.70
25.0	1.00
50.0	1.30
75.0	1.70
100.0	7.00

pH = 7.00 at the equivalence point for a strong acidstrong base titration

7. pH after adding 125.0 mL of NaOH

Moles of NaOH added = (0.1250 L)(0.100 mol/L)= 0.0125 moles of OH⁻ added.

Only 0.0100 moles of H_3O^+ to start, so we have an **excess** of OH^- of 0.0025 mol.

New volume = 50.0 mL + 125.0 mL = 175.0 mL.

 $[OH^{-}] = 0.0025 \text{ mol} / 0.175 \text{ L} = 0.014 \text{ M}.$

So, pOH = 1.85 and pH = 14 - 1.85 = 12.15.

Summary so far:

We could keep calculating the volume & pH:

Titration of strong base with strong acid

Example. Titration of 100.0 mL of 0.50 M NaOH with 1.0 M HCI.

titrant (in buret)

Overview:

- Net reaction: $H_3O^+(aq) + OH^-(aq) \rightarrow 2H_2O(I)$
- Equivalence point again pH = 7
- Very large change in pH near equivalence point
- Before equivalence point the pH depends on excess of strong base
- After equivalence point the pH depends on excess of strong acid
- •Titration curve calculation follows the same idea as we saw on previous slides

21

CALIFORNIA STATE UNIVERSIT NORTHRIDGE

- 🥑

Key to calculating weak acid/base titration curves:

- A strong base (or acid) reacts completely with a weak acid (or base)
- Then calculate as a new equilibrium (ICE table)

For titration of weak acid with strong base:

- pH at equivalence point will be > 7
- Weak acid / conjugate base buffer forms before the equivalence point

Example. Titration of 50.0 mL of 0.100 M CH₃COOH with 0.100 M NaOH. titrant (in buret)

Overview:

- Net reaction: $CH_3COOH(aq) + OH^{-}(aq) \rightarrow 2H_2O(I) + CH_3COO^{-}(aq)$
- Equivalence point pH > 7
- Smaller change in pH near equivalence point
- Before equivalence point the pH is nearly constant (**buffer**)
- After equivalence point the pH depends on excess of strong base

1. Equivalence point volume

moles acid = moles base
$$M_a V_a = M_b V_b$$

$$V_b = \frac{M_a V_a}{M_b} = \frac{(0.100 \ M)(50.0 \ mL)}{0.100 \ M}$$
$$= 50.0 \ mL$$

25

TE UNIVERSITY OBTHRIDGE

Titration of weak acid with strong base

- 2. Before adding any base
- $K_a = 1.8 \times 10^{-5}$ for CH₃COOH
- Treat as a weak acid equilibrium (ICE table problem)
- This would give pH = 2.87(try solving this ICE table problem)

CALIFORNIA

<u>3. Before equivalence point – add 15 mL of NaOH</u>

Strong base converts some of the weak acid (HA) to its conjugate base (A^{-}) .

Start with (0.0500 L HA)(0.100 mol/L) = 0.00500 mol of HA

Add 15 mL of NaOH (0.015 L)(0.100 M) = 0.0015 mol

(moles)	HA(aq)	+	OH⁻(aq)	\rightarrow	A⁻(aq)
Before	0.005				
Addition			0.0015		
After	0.0035		0		0.0015

- We now have a solution with 0.0035 moles of HA and 0.0015 moles of A⁻ with new volume = 65.0 mL:
- This is a buffer! (when in doubt, use ICE table!!!)
- ICE chart or Henderson-Hasselbalch equation gives pH = 4.38.

<u>Summary so far:</u>

pH = 2.87 at 0 mL of NaOH added pH = 4.38 at 15 mL of NaOH added

<u>4. Before equivalence point – add 25 mL of NaOH</u>

Strong base converts some of the weak acid to its conjugate base.

Start with (0.0500 L)(0.100 mol/L) = 0.00500 moles HA

Add 25 mL of NaOH (0.025 L)(0.100 M) = 0.0025 moles

We now have a solution with exactly equal HA and A^{-} (0.0025 mol of HA and 0.0025 mol of A^{-}).

New volume = 75.0 mL.

ICE table calculation gives pH = 4.75.

Vol NaOH added (mL)

CALIFORNIA STATE UNIVERSI NORTHRIDGE

Titration of weak acid with strong base

5. Before equivalence point – add 40 mL of NaOH

Strong base converts some of the weak acid to its conjugate base.

Start with (0.0500 L HA)(0.100 mol/L) = 0.00500 mol HA

Add 40 mL of NaOH (0.040 L)(0.100 M) = 0.0040 mol

We now have a solution with 0.0010 mol of HA and 0.0040 mol of A^{-} .

New volume = 50.0 mL + 40 mL = 90.0 mL.

ICE table gives pH = 5.34.

<u>6. At equivalence point – add 50 mL of NaOH</u>

All of the weak acid has been converted to its conjugate base.

Start with (0.0500 L HA)(0.100 mol/L) = 0.00500 mol HA

Add 50 mL of NaOH (0.050 L)(0.100 M) = 0.00500 mol

We now have a solution with 0 moles of HA and 0.0050 moles of A^{-} .

New volume = 100.0 mL.

Set up an ICE table for the weak base, A⁻ (next slide).

All of the weak acid has been converted to its conjugate base by the strong base:

 $[A^{-}] = 0.0050 \text{ mol} / 0.100 \text{ L} = 0.050 \text{ M}.$

	A ⁻ (aq)	H ₂ O(/)	⇒	HA(aq)	OH ⁻ (aq)
Ī	0.050 M	-		0 M	0 M
<u>C</u>	-X	-		+ <i>x</i>	+ <i>x</i>
<u>E</u>	0.050 - <i>x</i>	-		X	X

$$K_b = \frac{K_w}{K_a} = 5.56 \times 10^{-10} = \frac{x^2}{0.050 - x} \qquad pH = 8.72$$

Solution is a weakly basic!

Summary so far:

At the equivalence

point: pH > 7 !

7. Past equivalence point – add 75 mL of NaOH

Excess amount of *strong base*:

Start with (0.0500 L HA)(0.100 mol/L) = 0.00500 mol HA

Add 75 mL of NaOH (0.075 L)(0.100 M) = 0.00750 mol

We now have a solution with:

- 0 moles of HA and 0.00750 0.00500 = 0.00250 excess moles of OH⁻.
- New volume = 125.0 mL.
- • $[OH^{-}] = 0.020 \text{ M}, \text{ pOH} = 1.70, \text{ pH} = 14 1.70 = 12.3.$

Excess of strong base

Summary:

The pH at the equivalence point is not 7 but 9!

Titration of weak base with strong acid

Example: Titration of 100.0 mL of 0.05 M NH₃ with 0.10 M HCI. — titrant (in buret)

Overview:

- Net reaction: $NH_3(aq) + H_3O^+(aq) \rightarrow H_2O(I) + NH_4^+(aq)$
- Equivalence point pH < 7
- •At equivalence point: All weak base has been converted to weak acid.
- •Halfway to equivalence point: $[BH^+] = [B], pH = pK_a$ of acid.

$$pH = pK_a + log\left(rac{[B]}{[BH^+]}
ight)$$
 (buffer)

Titration of polyprotic acids

Indicators

- Color of some compounds depends on the pH
- Can use this to determine the equivalence point of a titration:

 $\begin{array}{l} \mathsf{HIn}(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \rightleftharpoons \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) + \mathsf{In}^-(\mathsf{aq}) \\ \mathsf{Color} \ \mathsf{1} \end{array}$

Phenolphthalein, a Common Indicator

40

Indicators

What is the pH range over which methyl red indicator $(K_a = 7.9 \times 10^{-6})$ changes from pink (acid form) to yellow (basic form)?

 $pK_a = -log(7.9 \times 10^{-6}) = 5.1$

Color changes at $pK_a \pm 1$ It will be pink at pH = 4.1(and below) and yellow at pH 6.1 (and above) Indicator Color Change: Methyl Red

pH (relative to pK _a)	[In ⁻]/[HIn] ratio	Color of Indicator Solution
$pH = pK_a$	$\frac{[ln^{-}]}{[Hln]} = 10^{0} = 1$	Intermediate color
$pH = pK_a + 1$ (and above)	$\frac{[ln^{-}]}{[Hln]} = 10^{1} = 10$	Color of In ⁻
$pH = pK_a - 1$ (and below)	$\frac{[\ln^{-}]}{[Hln]} = 10^{-1} = 0.10$	Color of HIn

© 2017 Pearson Education, Inc.

Note: If we have a pH meter, we can use that instead of indicator.