Chapter 18: Aqueous Ionic Equilibria III

Solubility equilibria

Chem 102 Jussi Eloranta

Solubility equilibria

- Solubility: amount of a solid (usually an ionic compound – a salt) that dissolves in solution. Molar solubility uses mol/L unit.
- Dynamic equilibrium between the solid and the solute.
- **Solubility product:** *K*_{sp} describes the equilibrium, e.g.:

$$\operatorname{CaF}_{2}(s) \Longrightarrow \operatorname{Ca}^{2+}(\operatorname{aq}) + 2 \operatorname{F}^{-}(\operatorname{aq})$$

 $K_{sp} = [Ca^{2+}][F^{-}]^{2}$

Small K_{sp} : low solubility; Large K_{sp} : high solubility.

=

Solubility

Even "insoluble" compounds establish a dynamic equilibrium with the ions in solution.

TABLE 17.2 Selected Solubility Product Constants (K _{sp}) at 25 °C					
Compound	Formula	K _{sp}	Compound	Formula	K _{sp}
Barium fluoride	BaF ₂	$2.45 imes 10^{-5}$	Lead(II) chloride	PbCl ₂	$1.17 imes 10^{-5}$
Barium sulfate	BaSO ₄	1.07×10^{-10}	Lead(II) bromide	PbBr ₂	$4.67 imes10^{-6}$
Calcium carbonate	CaCO ₃	$4.96 imes 10^{-9}$	Lead(II) sulfate	PbSO ₄	$1.82 imes 10^{-8}$
Calcium fluoride	CaF ₂	$1.46 imes 10^{-10}$	Lead(II) sulfide*	PbS	$9.04 imes 10^{-29}$
Calcium hydroxide	Ca(OH) ₂	$4.68 imes 10^{-6}$	Magnesium carbonate	MgCO ₃	$6.82 imes 10^{-6}$
Calcium sulfate	CaSO ₄	$7.10 imes 10^{-5}$	Magnesium hydroxide	Mg(OH) ₂	$2.06 imes 10^{-13}$
Copper(II) sulfide*	CuS	$1.27 imes 10^{-36}$	Silver chloride	AgCI	$1.77 imes 10^{-10}$
Iron(II) carbonate	FeCO ₃	3.07×10^{-11}	Silver chromate	Ag_2CrO_4	$1.12 imes 10^{-12}$
Iron(II) hydroxide	Fe(OH) ₂	4.87×10^{-17}	Silver bromide	AgBr	$5.35 imes 10^{-13}$
Iron(II) sulfide*	FeS	$3.72 imes 10^{-19}$	Silver iodide	Agl	$8.51 imes 10^{-17}$

*Sulfide equilibrium is of the type: $MS(s) + H_2O(I) \implies M^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$ © 2017 Pearson Education, Inc.

If $K_{so} << 1$, the compound is only slightly soluble or insoluble. If $K_{sp} > 1$, the compound is soluble.

Calculating molar solubility

Set up an ICE chart. Pure solids don't enter!

Example. Calculate the molar solubility of AgCl(s) in a saturated solution.

	$\operatorname{AgCl}(s)$	 $Ag^+(aq)$ -	$+ \operatorname{Cl}^{-}(\operatorname{aq})$
		0	0
C		+S	+S
Ε		S	S

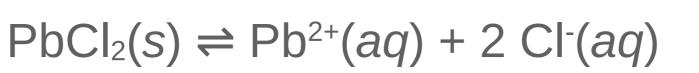
$$K_{sp} = [Ag^+][Cl^-] = S^2 = 1.77 \times 10^{-10}$$

 $S = 1.33 \times 10^{-5} M$

Calculating molar solubility

Example. What is the molar solubility of lead chloride $PbCl_2 (K_{sp} = 1.17 \times 10^{-5})?$

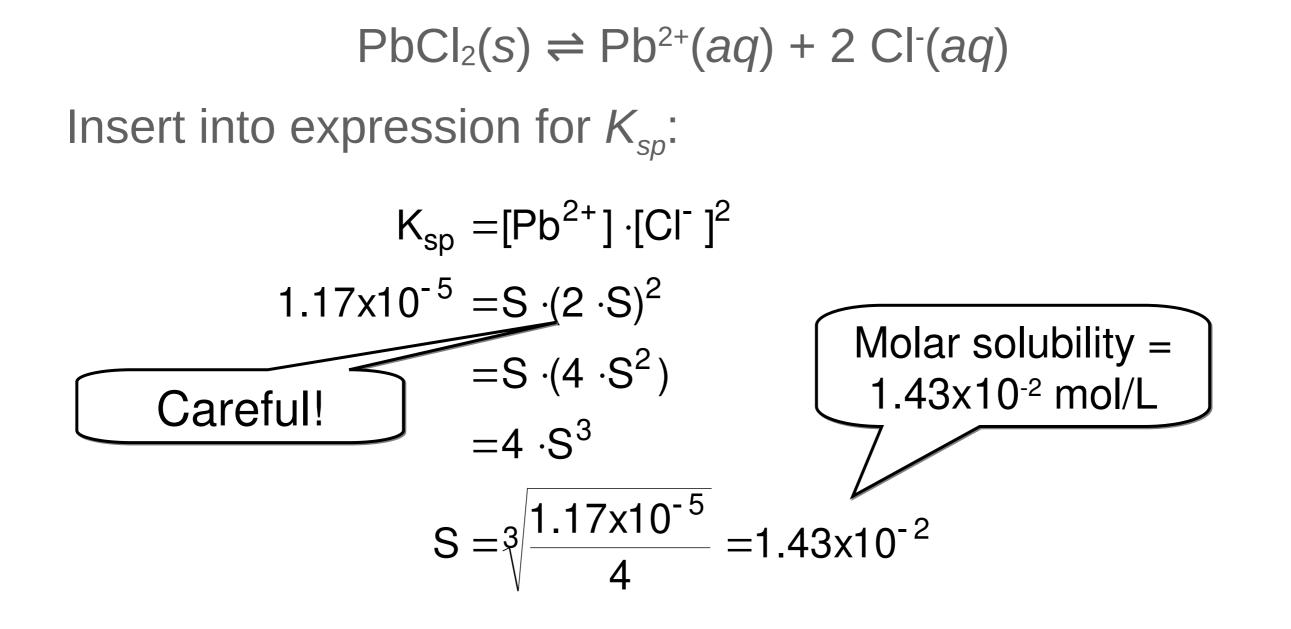
$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$$


Since this is an equilibrium problem, we'll write an ICE table.

Don't include $PbCl_2$ in the table because it is a solid and won't enter into expression for K_{sp} .

Ē

Calculating molar solubility


Writing an ICE table:

	Pb ²⁺ (aq)	Cl⁻(aq)		
Initial	0.00	0.00		
Change	+S	+2.5		
Equilibrium	S	$2 \cdot S$		
We'll use S (for molar solubility) rather than x				

₽

Calculating molar solubility

K_{sp} and Relative Molar Solubility

Care must be taken when comparing K_{sp} values:

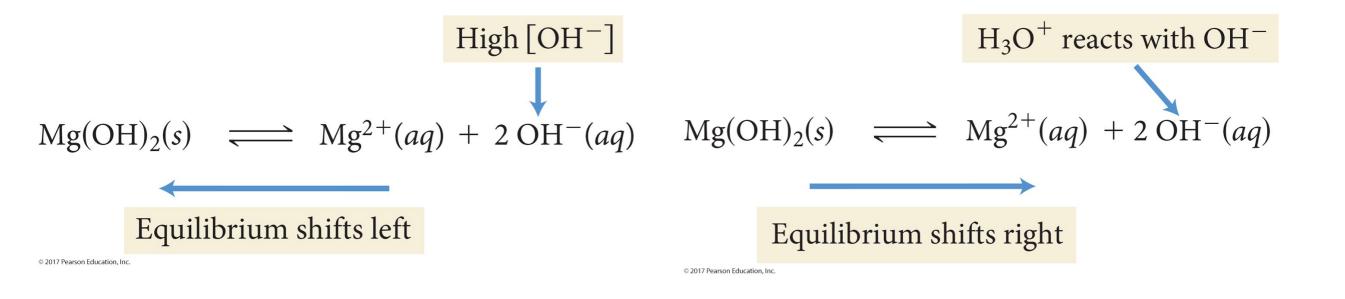
		K _{sp}	Molar solubility
3 mol	Mg(OH) ₂	2.06x10 ⁻¹³	3.72x10 ⁻⁵ M
2 mol	FeCO ₃	3.07x10 ⁻¹¹	5.54x10 ⁻⁶ M

The relationship between K_{sp} and molar solubility depends on the number of moles of ions it produces in water.

 K_{sp} 's can only be compared if the same number of moles of ions are made otherwise compare molar solubility.

The common ion effect

If one of the ions from a solid is already in the solution, it will drive the equilibrium left, **reducing** the solubility. **Example.** What is the solubility of AgCl in a 0.10 M solution of NaCl?


	$\operatorname{AgCl}(s)$	 Ag ⁺ (aq) -	$+ \operatorname{Cl}^{-}(\operatorname{aq})$
l		0	0.10
С		+S	+S
Е		S	0.10+S

 $K_{sp} = [Ag^+][Cl^-] = S(0.10 + S) \approx 0.10S$ $S = 1.77 \times 10^{-9} \ M$ Reduced from $1.33 \times 10^{-5} \ M$

Effect of pH on solubility

Solubility of Mg(OH)₂ would decrease in a basic solution, but increase in an acid. *Le Chatelier's principle!*

Ē

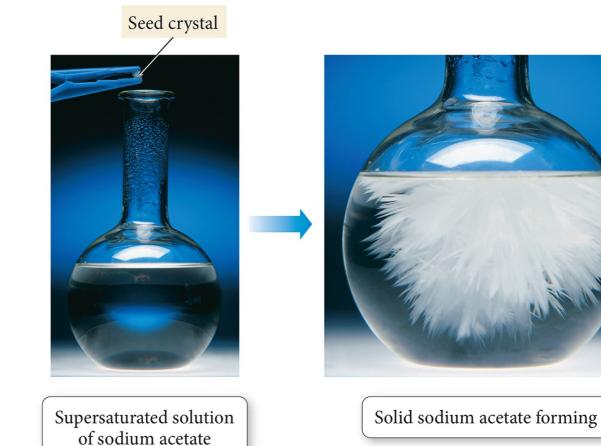
Precipitation

- Saturated solution: Concentration of ions in solution is equal to the concentration expected from K_{sp} : $Q = K_{sp}$.
- If more ions are added to a saturated solution, an equilibrium is established between the solid and the ions and some solid remains will remain.
- If *Q* < *K*_{*sp*}, the solution is **unsaturated**, and more ions could be added to the solution (i.e., added solid would dissolve).
- Sometimes, the ion concentration can become greater than simply expected from *K*_{*sp*}. In this case the solution is **super-saturated** and a *precipitate* would form as soon as a *crystallization seed* is provided.

Precipitation summary

- $Q < K_{sp}$: **Unsaturated**, more solute could go into solution
- $Q = K_{sp}$: **Saturated**, at equilibrium with the solid
- $Q > K_{sp}$: **Supersaturated**, a precipitate is expected to form

(This is the same K & Q comparison we did earlier)


Ē

Supersaturation

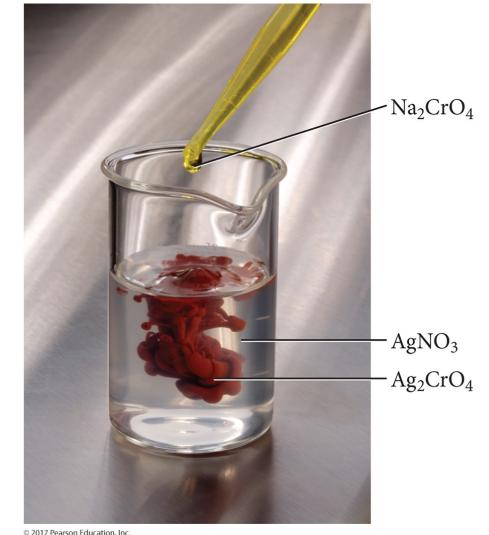
Note: Sometimes a solution can become <u>supersaturated</u> and a precipitate will not form because there is a kinetic barrier to precipitate forming. Here $Q > K_{sp}$!

© 2017 Pearson Education. Inc

A seed crystal or a scratch on the side of the beaker can cause precipitation to occur.

Precipitation reactions

Precipitation can be used to remove ions from solution.


Example:

- 1. Na₂CrO₄ (aq) = $2Na^{+}(aq) + CrO_{4}^{2-}(aq)$
- 2. $AgNO_3(aq) = Ag^+(aq) + NO_3^-(aq)$
- 3. $Ag_2CrO_4(s) \rightleftharpoons 2Ag^+(aq) + CrO_4^{2-}(aq)$

 $Q = [Ag^+]^2 [CrO_4^{2-}]$

- If $Q < K_{sp}$, no precipitate.
- If $Q = K_{so}$, precipitate begins to form.
- If $Q > K_{so}$, precipitate forms.

Precipitation reactions

Example. Does a solution of 0.020 M Ca(CH₃CO₂)₂(*aq*) mixed with 0.004 M Na₂SO₄(*aq*) produce a precipitate of CaSO₄(*s*) ($K_{sp} = 7.10 \times 10^{-5}$)?

First identify the the participant ion concentrations: $Ca(CH_3CO_2)_2(s) \rightarrow Ca^{2+}(aq) + 2 CH_3CO_2^{-}(aq)$ Full dissociation: $[Ca^{2+}] = 0.020 M$ $Na_2SO_4(s) \rightarrow 2 Na^+(aq) + SO_4^{2-}(aq)$ Full dissociation: $[SO_4^{-2-}] = 0.004 M$

16

Precipitation reactions

Write down the reaction that could form the precipitate:

 $CaSO_{4}(s) \neq Ca^{2+}(aq) + SO_{4}^{2-}(aq)$

Solve the solubility problem as described previously:

$$Q = [Ca^{2+}] \cdot [SO_4^{2-}]$$

= 0.020 × 0.004
= 8x10^{-5}

Since $Q > K_{sp}$, we have exceeded the solubility and a small amount of CaSO₄(s) should precipitate.

CALIFORNIA

 $K_{so} = 7.10 \times 10^{-5}$

Precipitation reactions

Exercise. A solution containing potassium bromide is mixed with another containing lead(II)acetate to form a solution that is 0.013 M in KBr and 0.0035 M in Pb($C_2H_3O_2$)₂. Does a precipitate form in the mixed solution at 20 °C? If so, identify the precipitate.

<u>Task</u>: Identify pairs of ions that form the least soluble compound and then check whether soluble using its K_{sp} . You can find K_{sp} values online at: https://en.wikipedia.org/wiki/Solubility_table

Selective precipitation

If a solution contains more than one ion, you might be able to remove one by selective precipitation.

Add a reagent that precipitates one ion, but not the others.

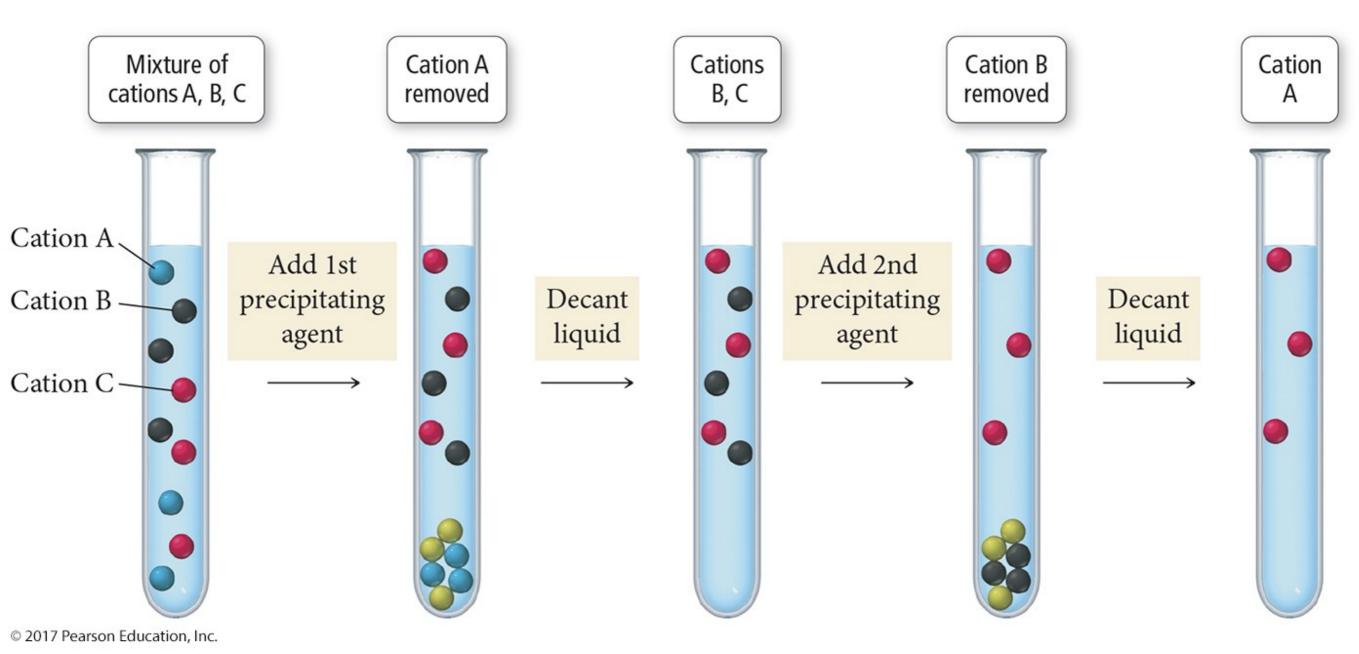
Example. Sea water contains both Mg²⁺ and Ca²⁺. Could they be separated by adding KOH?

Ca(OH)₂: $K_{sp} = 4.68 \times 10^{-6}$ Mg(OH)₂: $K_{sp} = 2.06 \times 10^{-13}$

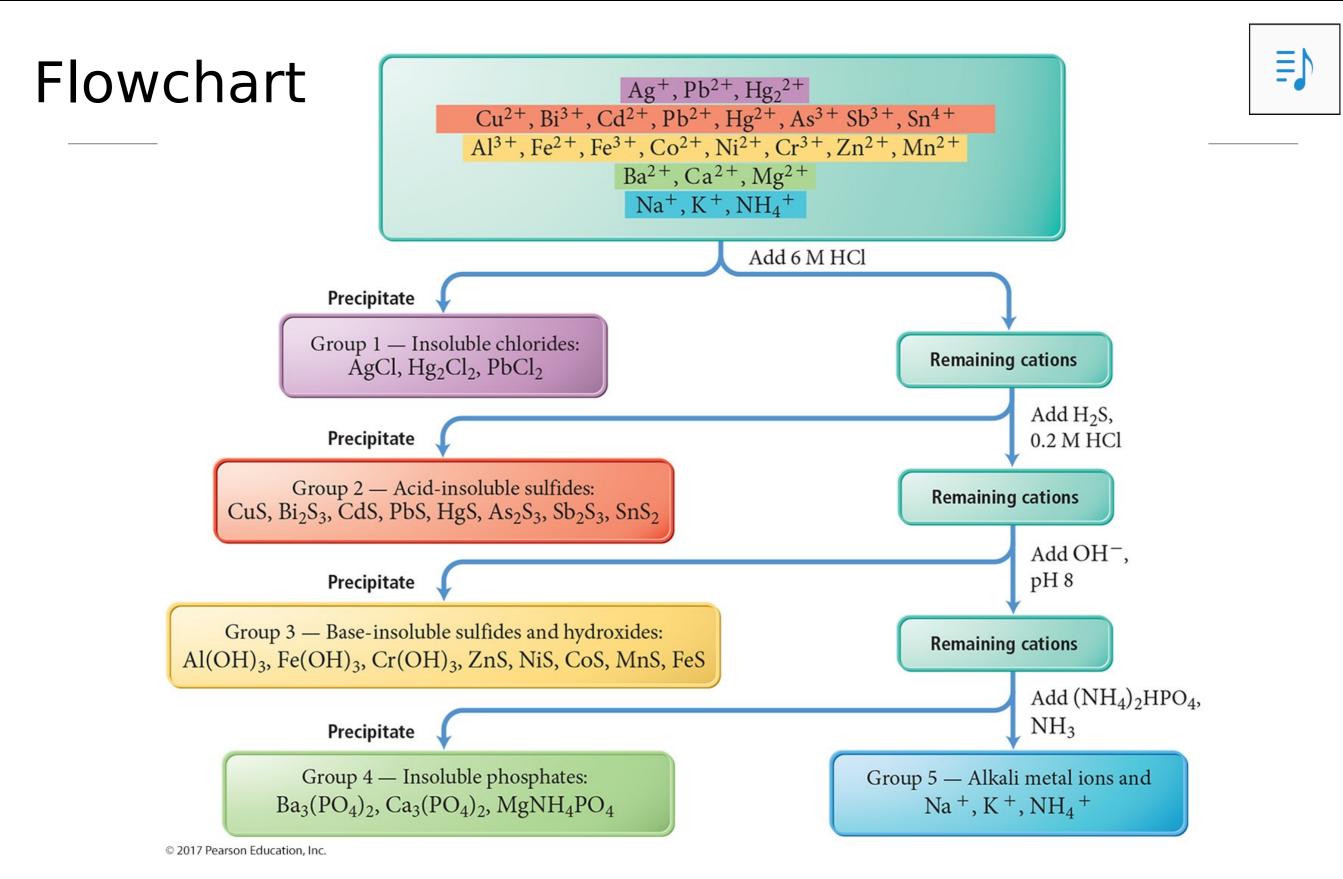
<u>Yes</u>, large difference between solubilities!

(both hydroxides are rather insoluble in water)

Application: qualitative analysis



- Non-quantitative determination of the ions in an unknown solution.
- Add certain regents to see if a precipitate forms, then determine what the precipitate could be.
- "Flow charts" can be used to do such studies systematically.



≣♪

Application: qualitative analysis

Complex ion equilibria

- Transition metals can generally act as Lewis acids to form a "complex ion".
- Central metal ion surrounded by a neutral molecule or ion that acts as a Lewis base.

Example.
$$\operatorname{Ag}^+(\operatorname{aq}) + 2 \operatorname{H}_2O(\ell) \Longrightarrow \operatorname{Ag}(\operatorname{H}_2O)_2^+(\operatorname{aq})$$

 Even though we write the ion as Ag⁺(aq), it is understood that it might be hydrated in aqueous solution.

Complex ion equilibria

The water can be displaced by something else in the solution:

$$\begin{array}{c} \operatorname{Ag}^{+}(\operatorname{aq})+2 \ \operatorname{NH}_{3}(\operatorname{aq}) \rightleftharpoons \operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+}(\operatorname{aq}) \\ & \uparrow \\ \\ \\ \text{really } \operatorname{Ag}(\operatorname{H}_{2}\operatorname{O})_{2}^{+}(\operatorname{aq}) \end{array}$$

This complex has a "formation constant":

$$K_f = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2} = 1.7 \times 10^7$$

CS

K_f values are usually large

TABLE 17.3 Formation Constants of Selected Complex Ions in Water at 25 °C				
<i>K</i> f	Complex Ion	<i>K</i> f		
$1 imes 10^{21}$	Cu(NH ₃) ₄ ²⁺	$1.7 imes10^{13}$		
$1.7 imes10^7$	Fe(CN) ₆ ⁴⁻	$1.5 imes10^{35}$		
$2.8 imes10^{13}$	Fe(CN) ₆ ³⁻	$2 imes 10^{43}$		
$7 imes 10^{19}$	Hg(CN) ₄ ²⁻	$1.8 imes10^{41}$		
$3 imes10^{33}$	HgCl ₄ ²⁻	$1.1 imes10^{16}$		
$5.5 imes10^3$	Hgl ₄ ²⁻	$2 imes 10^{30}$		
$2 imes 10^{6}$	Ni(NH ₃) ₆ ²⁺	$2.0 imes10^8$		
$3 imes10^{18}$	Pb(OH) ₃ ⁻	$8 imes 10^{13}$		
$2.3 imes10^{33}$	Sn(OH) ₃ ⁻	$3 imes10^{25}$		
$5 imes10^9$	Zn(CN) ₄ ²⁻	$2.1 imes10^{19}$		
1×10^3	$Zn(NH_3)_4^{2+}$	$2.8 imes10^9$		
$8.0 imes10^{29}$	Zn(OH) ₄ ²⁻	$2 imes 10^{15}$		
$1.0 imes10^{25}$				
	$K_{\rm f}$ 1×10^{21} 1.7×10^7 2.8×10^{13} 7×10^{19} 3×10^{33} 5.5×10^3 2×10^6 3×10^{18} 2.3×10^{33} 5×10^9 1×10^3 8.0×10^{29}	$K_{\rm f}$ Complex Ion 1×10^{21} ${\rm Cu}({\rm NH}_3)_4^{2+}$ 1.7×10^7 ${\rm Fe}({\rm CN})_6^{4-}$ 2.8×10^{13} ${\rm Fe}({\rm CN})_6^{3-}$ 7×10^{19} ${\rm Hg}({\rm CN})_4^{2-}$ 3×10^{33} ${\rm HgCI}_4^{2-}$ 5.5×10^3 ${\rm HgI}_4^{2-}$ 2×10^6 ${\rm Ni}({\rm NH}_3)_6^{2+}$ 3×10^{18} ${\rm Pb}({\rm OH})_3^ 2.3 \times 10^{33}$ ${\rm Sn}({\rm OH})_3^ 5 \times 10^9$ ${\rm Zn}({\rm CN})_4^{2-}$ 1×10^3 ${\rm Zn}({\rm OH})_4^{2-}$		

© 2017 Pearson Education, Inc.

Effect of complex ions on solubility

Formation of complex ions can increase the solubility of a salt that normally is not very soluble. For example:

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag^{+}}(aq) + \operatorname{Cl^{-}}(aq) K_{sp} = 1.77 \times 10^{-10}$$
$$\operatorname{Ag^{+}}(aq) + 2\operatorname{NH}_{3}(aq) \rightleftharpoons \operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+}(aq) K_{f} = 1.7 \times 10^{7}$$

 $AgCl(s) + 2 NH_3(aq) \Longrightarrow Ag(NH_3)_2^+(aq) + Cl^-(aq)$

$$K = K_{sp} \times K_f = 3.0 \times 10^{-3}$$

This is much larger than the original K_{so} value (1.77x10⁻¹⁰).

Tips for this section

- Be able to write a solubility expression for K_{sp}
- Write the balanced reactions
- Calculate molar solubility (or mass solubility) from a given K_{sp}
- Calculate K_{sp} from solubility data
- Common ion effect
- Identify a potential precipitate in a reaction
- Identify whether or not a precipitate forms