Chapter 19: Free Energy and Thermodynamics II

Chem 102 Jussi Eloranta

Spontaneous processes: Entropy of the <u>universe</u> increases ($\Delta S_{univ} > 0$)

Strange question: Why is the freezing of water spontaneous at 0 $^{\circ}C$?

- Entropy decreases, right?
- Yes, but the water is the <u>system</u>, what about the surroundings?

 $\angle \Delta S_{sys}$ decreases

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

Heat transfer and changes in the entropy of the surroundings

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

- Spontaneous process: $\Delta S_{univ} > 0$
- ΔS_{sys} can be negative as long as ΔS_{surr} is more positive than ΔS_{sys} is negative:

$$\Delta S_{surr} > -\Delta S_{sys}$$

Heat transfer and changes in the entropy of the surroundings

Back to freezing of water:

• ΔS_{sys} is negative

 But the process is exothermic, releasing heat to the surroundings and therefore increasing the entropy of the surroundings

Exothermic process: Increases entropy of surroundings Endothermic process: Decreases entropy of surroundings

≣♪

Temperature dependence of ΔS_{surr}

Freezing of water is spontaneous at 0 °C, but non spontaneous at a higher temperature. Why?

- Heat released to the surroundings has less impact at higher temperatures
- For freezing of water: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$ Negative Positive and large at low T Positive and small at high T

 $\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$ (for water freezing)

© 2017 Pearson Education, Inc.

6

Quantifying ΔS_{surr}

 q_{sys} corresponds to heat of the system:

- $q_{sys} < 0$: Exothermic ($\Delta S_{surr} > 0$)
- $q_{sys} > 0$: Endothermic ($\Delta S_{surr} < 0$)

At constant pressure, $q_{sys} = \Delta H_{sys}$, so at constant *P*, *T*:

$$\Delta S_{surr} = \frac{-\Delta H_{sys}}{T}$$

Ē

Calculate ΔS_{surr}

Example. Given the reaction: $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$ $\Delta H_{rxn} = -2044 \text{ kJ}$

calculate ΔS_{surr} at 25 °C, determine signs of ΔS_{sys} and ΔS_{univ} .

Solution. Calculate the entropy change of the surroundings:

$$\Delta S_{surr} = -\Delta H_{surr} / T = -(-2,044 \times 10^3 \text{ J}) / (288 \text{ K}) = 7080 \text{ J} / \text{K}.$$

The number of moles increases in the reaction and therefore $\Delta S_{sys} > 0$. Since both ΔS_{surr} and ΔS_{sys} are positive then $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$. This means that the process is spontaneous.

Gibbs Free Energy

For convenience, let's drop the sys and assume if you see ΔS or ΔH it is for the system.

Gibbs Free Energy: G = H - TS (system) Therefore, the change in *G* is (system):

At constant *T* and *P*: $\Delta G = -T\Delta S_{univ}$

Note: Predicting spontaneity based on system observables!

Josiah Willard Gibbs 1839 – 1903 Connecticut, USA

Gibbs Free Energy

The above result can be obtained by combining: $\Delta G_{sys} = \Delta H_{sys} - T\Delta S_{sys}$ and $\Delta S_{surr} = -\Delta H_{sys} / T$

So, use ΔG (constant *T*, *P*) as a criterion for spontaneity!

 ΔG is proportional to $-\Delta S_{univ}$ and hence:

- If $\Delta G < 0$, process is spontaneous
- If $\Delta G > 0$, process is nonspontaneous

Effect of ΔH , ΔS , and T on spontaneity

<u>Case 1: ΔH negative, ΔS positive</u>

- Exothermic process and the entropy increases
- Process is spontaneous at all temperatures

Effect of ΔH , ΔS , and T on spontaneity

- Endothermic process and entropy of system increases
- Process is non-spontaneous at all temperatures

Effect of ΔH , ΔS , and T on spontaneity

- Exothermic process and entropy of system decreases
- Process is spontaneous at low temperatures
- Process is non-spontaneous at high temperatures

Effect of ΔH , ΔS , and T on spontaneity

- Endothermic process and entropy of system increases
- Process is spontaneous at high temperatures
- Process is non-spontaneous at low temperatures

Summary on Gibbs free energy (ΔG)

$\Delta G = \Delta H - T \Delta S$

TABLE 18.1 The Effect of ΔH , ΔS , and T on Spontaneity				
ΔН	ΔS	Low Temperature	High Temperature	Example
_	+	Spontaneous ($\Delta G < 0$)	Spontaneous ($\Delta G < 0$)	$2 \text{ N}_2 \text{O}(g) \longrightarrow 2 \text{ N}_2(g) + \text{O}_2(g)$
+	-	Nonspontaneous ($\Delta G > 0$)	Nonspontaneous ($\Delta G > 0$)	$3 O_2(g) \longrightarrow 2 O_3(g)$
_	_	Spontaneous ($\Delta G < 0$)	Nonspontaneous ($\Delta G > 0$)	$H_2O(I) \longrightarrow H_2O(s)$
+	+	Nonspontaneous ($\Delta G > 0$)	Spontaneous ($\Delta G < 0$)	$H_2O(I) \longrightarrow H_2O(g)$

© 2017 Pearson Education, Inc.

Ē

Consider the reaction: $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$. Given $\Delta H = -137.5$ kJ and $\Delta S = -120.5$ J/K, calculate ΔG at 25 °C. Is the reaction spontaneous? How does ΔG vary with temperature?

Example

Solution:
$$T = 298$$
 K, so:
 $\Delta G = \Delta H - T\Delta S = -137.5 \times 10^3 J - (298 K)(-120.5 J/K)$
 $\Delta G = -101,591 J$

Since $\Delta G < 0$ this reaction is spontaneous at given the temperature. Increasing *T* increases ΔG , so the reaction will become non-spontaneous at high temperatures.

Calculating entropy in a reaction

Third Law: As temperature approaches absolute zero, entropy approaches a constant. The entropy of a perfectly ordered crystal at absolute zero is zero.

Nothing in the universe has zero entropy.

Entropy is inherent to the molecules in a reaction:

- Available in thermodynamic tables
- Has units of J / (mol K) (molar entropy)
- "Extensive" property depends on how much is present but molar entropy is not.

Standard state -

- We will be calculating ΔS° values (also for ΔH° and ΔG°)
- Standard State (or Standard Conditions)
 - Gas: Pressure = 1 atm
 - Liquid or Solid: Pure substance in its most stable state at P = 1 atm.
 - Solution: 1 M concentration
 - Does not specify temperature but usually T = 25 °C.

Then, in a reaction (depending on the number of moles)

$$\Delta S_{rxn}^{\circ} = S_{products}^{\circ} - S_{reactants}^{\circ}$$

TABLE 18.2 Standard Molar Entropy Values (S°) for Selected Substances at 298 K

Substance	S°(J/mol · K)	Substance	S°(J/mol · K)	Substance	S°(J/mol · K)
Gases		Liquids		Solids	
$H_2(g)$	130.7	H ₂ O(<i>I</i>)	70.0	MgO(s)	27.0
Ar(g)	154.8	CH ₃ OH(<i>I</i>)	126.8	Fe(s)	27.3
$CH_4(g)$	186.3	Br ₂ (<i>I</i>)	152.2	Li(s)	29.1
$H_2O(g)$	188.8	C ₆ H ₆ (<i>I</i>)	173.4	Cu(s)	33.2
N ₂ (g)	191.6			Na(s)	51.3
NH ₃ (g)	192.8			K(s)	64.7
$F_2(g)$	202.8			NaCl(s)	72.1
0 ₂ (g)	205.2			CaCO ₃ (s)	91.7
$Cl_2(g)$	223.1			FeCl ₃ (s)	142.3
$C_2H_4(g)$	219.3				

© 2017 Pearson Education, Inc.

Note: The units are J / (mol K). These are molar entropies.

Standard Entropy of a Reaction

$$\Delta S_{rxn}^{\circ} = \sum n_p S^{\circ}(products) - \sum n_r S^{\circ}(reactants)$$

Reaction must be specified and balanced!

- n_p is the number of moles of each product
- n_r is the number of moles of each reactant
- Note: Standard states
- Similar to calculation for enthalpy of reaction
- Unlike enthalpy of reaction, all elements have an entropy at 25 °C!

Ē

Example

Calculate the standard entropy of reaction for:

 $2 \ \mathrm{NH}_3(g) \longrightarrow \mathrm{N}_2\mathrm{H}_4(g) + \mathrm{H}_2(g)$

Compound	Sº (J/mol K)
NH₃(<i>g</i>)	192.8
$N_2H_4(g)$	238.5
H ₂ (g)	130.7

$$\Delta S_{rxn}^{\circ} = \sum n_p S^{\circ}(products) - \sum n_r S^{\circ}(reactants)$$

 $\Delta S_{rxn}^{\circ} = (238.5 + 130.7 - 2 \times 192.8) \text{ J / (mol K)}$ = -16.4 J / (mol K)

Ē

Relative entropies

As we discussed before: $S_{gas} > S_{liquid} > S_{solid}$

- As seen in the table: H₂O (g) > H₂O (/) (at 298 K)
- Trend with molar mass: Higher molar mass is generally higher S

		S° (J∕mol·K)	
_	He(g)	126.2	
	Ne(g)	146.1	
	Ar(g)	154.8	
	Kr(g)	163.8	
-	Xe(g)	169.4	

© 2017 Pearson Education, Inc.

Allotropes

 Some elements exist in two (or more) forms within the same state called *allotropes*. Usually different crystal forms of a solid.

© 2017 Pearson Education, Inc

• Allotropes will have different S° values based on structure

Examples:

- C(s)
- S₆(s) vs. S₈(s)
- O₃(g) vs. O₂(g)

Ē

Molecular complexity

In general, the more complex the molecule, the higher the entropy:

	Molar Mass (g/mol)	S°(J/mol · K)
Ar(g)	39.948	154.8
NO(g)	30.006	210.8

© 2017 Pearson Education, Inc.

	Molar Mass (g/mol)	S°(J/mol · K)
CO(g)	28.01	197.7
$C_2H_4(g)$	28.05	219.3

© 2017 Pearson Education, Inc.

Dissolution

Dissolved ions in solution have a higher entropy than the crystalline solid:

lons can move more freely in liquid

	S°(J/mol · K)
KClO ₃ (s)	143.1
KClO ₃ (aq)	265.7

© 2017 Pearson Education, Inc.

Recall: Standard enthalpy of reaction

$$\Delta H_{rxn}^{\circ} = \sum n_p \Delta H_f^{\circ}(products) - \sum n_r \Delta H_f^{\circ}(reactants)$$

- ΔH_f° = Heat of formation of a substance in standard state
- n_p is the number of moles of each product
- n_r is the number of moles of each reactant
- For an element in its standard state, $\Delta H_f^o = 0$

<u>Remember: $\Delta H_{rxn}^{\circ} < 0$: exothermic $\Delta H_{rxn}^{\circ} > 0$: endothermic</u>

≣♪

Example

Calculate the standard enthalpy of reaction for: $2 \text{ NH}_3(g) \longrightarrow N_2H_4(g) + H_2(g)$

$$\Delta H_{rxn}^{\circ} = \sum n_p \Delta H_f^{\circ}(products) - \sum n_r \Delta H_f^{\circ}(reactants)$$

Compound	Δ <i>H</i> [°] (kJ / mol)
NH₃(<i>g</i>)	-45.9
N ₂ H ₄ (g)	50.6
H ₂ (g)	0

 $\Delta H^{\circ}_{rxn} = (50.6 + 0 - 2 \times (-45.9)) \text{ kJ / mol} = 142.4 \text{ kJ / mol}$

Calculating ΔG_{rxn}°

Now we have calculated ΔS_{rxn}° and ΔH_{rxn}° :

Put them together (with *T*) to get the Gibbs Free Energy change in a chemical reaction:

$$\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$$

Note that there are two ways to get ΔG_{rxn}° .

Calculating ΔG_{rxn}°

$$\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$$

2 $\operatorname{NH}_3(g) \longrightarrow \operatorname{N}_2\operatorname{H}_4(g) + \operatorname{H}_2(g)$ $\Delta S^{\circ}_{rxn} = -16.4 \ J/mol \cdot K$ $\Delta H^{\circ}_{rxn} = 142.4 \ kJ/mol$

Is the reaction spontaneous at 25 °C (298 K)?

$$\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$$

= 142.4 kJ/mol - 298 K × (-0.0164 kJ / (mol K))
= 147.3 kJ/mol
(be coreful: edd. l/mol to l/mol or k l/mol to k l/mol)

(be careful: add J/mol to J/mol or kJ/mol to kJ/mol) Here $\Delta G^{\circ}_{rxn} > 0$, so this is not spontaneous.

Calculate the ΔG_{rxn}° given Free Energies of Formation

Sometimes you will be given Free Energies of Formation.

The reaction free energy can be calculated from:

$$\Delta G_{rxn}^{\circ} = \sum (n_p \Delta G_f^{\circ}(products)) - \sum (n_r \Delta G_f^{\circ}(reactants))$$

A similar formula to those for calculating ΔH^{o}_{rxn} and ΔS^{o}_{rxn} .