Chapter 19: Free Energy and Thermodynamics III

Chem 102 Jussi Eloranta

Calculate the ΔG°_{rxn} given steps in a reaction

- Similar to Hess's Law: If you have multiple reactions that add up to a reaction, you can calculate Gibbs Free Energies.
- If a chemical equation is multiplied by some factor, then ΔG_{rxn}^{o} is multiplied by the same factor.
- If a chemical equation is reversed, change the sign of ΔG_{rxn}^{o} .
- If a chemical reaction can be expressed as a sum of a series of steps, then ΔG_{rxn}^{o} for the overall reaction is the sum of the free energies of reaction for each step.

Ē

Example

Find ΔG_{rxn}° for $N_2O(g) + NO_2(g) \longrightarrow 3NO(g)$ given the reactions:

1.
$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g) \quad \Delta G_{rxn}^\circ = -72.2 \ kJ$$

2.
$$N_2(g) + O_2(g) \longrightarrow 2 NO(g) \quad \Delta G_{rxn}^\circ = +175.2 \ kJ$$

3. $2 \operatorname{N}_2 O(g) \longrightarrow 2 \operatorname{N}_2(g) + O_2(g) \quad \Delta G_{rxn}^\circ = -207.4 \ kJ$

Solution.

1. Add reversed 1 to 3:

$$2NO_2 + 2N_2O \rightarrow 2NO + 2O_2 + 2N_2$$

 $\Delta G_{rxn^{o}} = (72.2 - 207.4) \text{ kJ} = -135.2 \text{ kJ}$

2. Divide this by 2: NO₂ + N₂O \rightarrow NO + O₂ + N₂ ΔG_{rxn}^{o} = -67.6 kJ

3. Add 2 to this: NO₂ + N₂O \rightarrow 3NO $\Delta G_{rxn}^{\circ} = (175.2 - 67.6) \text{ kJ} = 107.6 \text{ kJ}$

Free Energy Changes for Nonstandard states

Remember that ΔG_{rxn}° only applies to standard conditions. But what about nonstandard conditions?

$$\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RTlnQ$$

- $R = 8.314 \text{ J} / (\text{mol K}) (= N_A k_B; "molar Boltzmann constant")$
- *T* = temperature (K)
- Q = reaction quotient (no unit)
- <u>Note</u>: Under standard conditions $\Delta G_{rxn} = \Delta G_{rxn}^{o}$

and therefore Q = 1 (because ln(1) = 0).

Example: Water evaporation into the atmosphere

$$H_2O(\ell) \Longrightarrow H_2O(g) \quad \Delta G^{\circ}_{rxn} = +8.59 \ kJ$$

This is non-spontaneous, but you know that water evaporates at 25 °C! Why?

Non-standard condition!

Recall:
$$Q = \frac{P_{H_2O}}{[H_2O(\ell)]} = P_{H_2O}$$

- Standard conditions: $P_{H_{2O}} = 1$ atm
- In this example the partial pressure of water above the liquid is << 1 atm (also, it is constantly being removed; open system).

© 2017 Pearson Education, Inc.

Water example continued

$$H_2O(\ell) \Longrightarrow H_2O(g) \quad \Delta G^{\circ}_{rxn} = +8.59 \ kJ$$

<u>**1. Standard conditions:</u>** $Q = 1 (P_{H_{2O}} = 1 \text{ atm})$ </u>

$$\Delta G_{rxn} = 8.59 \ kJ + RTln(1) = 8.59 \ kJ$$

Spontaneous in reverse direction (would condense)

2. If very little water is in the atmosphere: $P_{H_{2O}} = 0.005$ atm $\Delta G_{rxn} = 8.59 \ kJ + RTln(0.005) = -4.54 \ kJ$ Spontaneous in forward direction (would evaporate)

Water example continued

$$H_2O(\ell) \Longrightarrow H_2O(g) \quad \Delta G^{\circ}_{rxn} = +8.59 \ kJ$$

<u>3. If P_{H_2O} = 0.0313 atm:</u>

 $\Delta G_{rxn} = 8.59 \ kJ + RTln(0.0313) = 8.59 \ kJ - 8.59 \ kJ = 0 \ kJ$

Reaction is not spontaneous in either direction, so the reaction is at <u>equilibrium</u>.

Relating ΔG_{rxn}° to K (equilibrium)

• At equilibrium, Q = K and $\Delta G_{rxn} = 0$ (non-spontaneous in either direction):

 $0 = \Delta G_{rxn}^{\circ} + RTlnK \qquad \Delta G_{rxn}^{\circ} = -RTlnK$

- Remember to use K_p for gases and K_c for solutions
- If K < 1, ΔG_{rxn}^o is positive because ln(K) is negative
 Under standard conditions (Q = 1), Q > K, spontaneous in reverse direction
- If K > 1, ΔG_{rxn}^o is negative because In(K) is positive
 Under standard conditions (Q = 1), Q < K, spontaneous in forward direction
- If K = 1, ΔG_{rxn}^{o} is zero, at equilibrium under standard conditions

Example

Determine the equilibrium constant at 25 °C (298 K) for:

$$N_2O_4(g) \Longrightarrow 2NO_2(g) \quad \Delta G^{\circ}_{rxn} = 2.8 \ kJ / mol$$

We use:
$$\Delta G_{rxn}^{\circ} = -RTlnK$$

Solve for K: $K = \exp(-\Delta G_{rxn}^{o}/(RT)) = \underline{0.32}$

Collection of useful formulas

$$\Delta G_{rxn}^{\circ} = -RTlnK$$
$$\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T\Delta S_{rxn}^{\circ}$$
$$-RTlnK = \Delta H_{rxn}^{\circ} - T\Delta S_{rxn}^{\circ}$$
$$lnK = -\frac{\Delta H_{rxn}^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S_{rxn}^{\circ}}{R}$$

Two point form: $ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H_{rxn}^{\circ}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$