Chapter 20: Electrochemistry I

Chem 102 Jussi Eloranta

Ē

Electrochemistry

- The study of the relationships between electrical processes and chemical processes.
- Applications: batteries, electroplating, fuel cells, hydrogen production, biological processes.

Electrochemistry

Electrochemical processes:

- Oxidation-reduction (redox) processes, which involve electron transfers from one substance to another
- Energy released by a spontaneous chemical reaction is converted into electricity (e.g., battery)
- Electrical energy can be used to force a non-spontaneous reaction to occur (e.g., electrolysis)

Basics of electricity

<u>Voltage</u> (*U*) is the potential energy per electron (Volts; V)

<u>Work</u> is the electron potential energy times the total charge moved (Joules; J): $w = U \times q_{tot}$

<u>Current</u> (*I*) represents the number of electrons passing through per second (Amperes; A)

<u>Resistance</u> (Ohm's law) is R = U / I(Ohm or Ω ; "load")

<u>Power</u> is $P = U \times I$ (Watts)

Electric *current* is analogous to *volume* of water per second flowing out of a hose.

Electric *potential difference* is analogous to the hydrostatic *pressure* pushing water through a hose. High pressure gives high flow.

Oxidation-reduction reactions (redox reactions)

Redox reactions involve the *transfer of electrons* from one atom/molecule to another.

Example: $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

Electrons are transferred from iron to oxygen.

Ē

Combustion as a redox reaction

$$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{H}_2\operatorname{O}(g)$$

Hydrogen and oxygen in the balloon react to form gaseous water.

2 H₂O

Redox reactions

- Reacting atoms gain or lose electrons:
 - If one loses one (or more) electron, another must gain one (or more) electron.
- Atoms that lose electrons are being oxidized.
- Atoms that gain electrons are being reduced.
- LEO GER:

Loss of electrons is oxidation, gain of electrons is reduction

• OIL RIG:

Oxidation is loss of electrons, reduction is gain of electrons

Redox reactions

Or: oil rig

Example: $2Na + Cl_2 \rightarrow 2NaCl$ 1 $2Na \rightarrow 2Na^+ + 2e^-$ Ox $Cl_2 + 2e^- \rightarrow 2Cl^-$ Red

8

Oxidation: loosing electrons Reduction: gaining electrons

Ē

Keeping track of electron transfer

- Oxidation state:
 - Oxidation states are <u>not</u> polyatomic ion charges
 - Oxidation states are <u>imaginary</u> charges based on a set of rules (next slide)
 - However, ion charges are <u>real and measurable</u>
- Oxidation states are written -1, -2, +2, etc. or roman letters
- Ion charges are written as superscripts 1-, 2-, 2+, etc.

Oxidation state rules

rules for assigning oxidation states (in order of priority)

free elements have an oxidation state = 0

 $Na = 0, Cl_2 = 0$

Image monatomic ions have an oxidation state = charge

NaCl: Na = +1, Cl = -1

the sum of the oxidation states of all atoms in a...

(a) ... compound = 0

(b) ... polyatomic ion = charge on the ion

metals:

- (a) Group 1 metals have an oxidation state = +1
- (b) Group 2 metals have an oxidation state = +2

In non-metals have oxidation states following table on next slide

Oxidation state rules

5. non-metals have oxidation states following this table

higher on table takes higher priority

nonmetal	oxidation state	example
F	-1	CF_4
Н	+1	CH ₄
0	-2	CO_2
Group 7A	-1	CCl ₄
Group 6A	-2	CS_2
Group 5A	-3	NH ₃

Practice: Assign oxidation states

- Br₂ (Hint: element; 0)
- K⁺ (Hint: monoatomic ion; +1)
- LiF (Hint: both are monoatomic ions; +1 & -1)
- CO_2 (Hint: O atom is -2 then C is +4)
- SO₄²⁻ (Hint: O atom is -2 and total is -2 then S is +6)

Common oxidation states

+1 +2

-2 -1

Ē

Oxidation and reduction - another definition

- Oxidation: an atom's oxidation state increases
- Reduction: an atom's oxidation state decreases

Oxidizing and reducing agents

- Oxidation and reduction must occur simultaneously
- The reactant that reduces an atom is called the reducing agent The reducing agent contains the element that is oxidized
- The reactant that oxidizes an atom is called the oxidizing agent The oxidizing agent contains the element that it reduced

 $2\operatorname{Na}(s) + \operatorname{Cl}_2(g) \to \operatorname{NaCl}(s)$

Na is oxidized, Cl is reduced

Na is the reducing agent, Cl_2 is the oxidizing agent

Oxidation and reduction half-reactions

$${}^{0}_{2\text{Mg}}(s) + {}^{0}_{2}(g) \longrightarrow {}^{2+2-}_{2\text{MgO}}(s)$$

This reaction can be split into two half-reactions

<u>Oxidation</u> half-reaction reactant (= reducing agent) *loses* e⁻ $2 \text{ Mg} \rightarrow 2 \text{ Mg}^{2+} + 4 e^{-}$ <u>Reduction</u> half-reaction Reactant (= oxidizing agent) gains e⁻ O₂ + 4 e⁻ → 2 O²⁻

The "Half-reaction method" from Tro (7 steps):

$$AI(s) + Cu^{2+}(aq) \rightarrow AI^{3+}(aq) + Cu(s)$$

1. Assign oxidation states to all atoms and identify the substances being oxidized and reduced:

≣♪

Balancing Redox Equations

2. Separate the overall reaction into two half-reactions: one for oxidation, one for reduction:

Oxidation: $AI(s) \rightarrow AI^{3+}(aq)$ Reduction: $Cu^{2+}(aq) \rightarrow Cu(s)$

- 3. Balance each half-reaction with respect to **mass** in the following order:
 - A. Balance all elements other than H and O
 - B. Balance O by adding H₂O
 - C. Balance H by adding H⁺

4. Balance each half-reaction with respect to **charge** by adding electrons:

 $AI(s) \rightarrow AI^{3+}(aq) + 3e^{-1}$ $Cu^{2+}(aq) + 2e^{-1} \rightarrow Cu(s)$

5. Make the number of electrons in both half-reactions equal by multiplying one or both half-reactions by a small whole number:

 $2[Al(s) \rightarrow Al^{3+}(aq) + 3e^{-}]$ $2Al(s) \rightarrow 2Al^{3+}(aq) + 6e^{-}$

 $3[Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)]$ $3Cu^{2+}(aq) + 6e^{-} \rightarrow 3Cu(s)$

6. Add the two half-reactions together, canceling electrons and other species as necessary:

 $2AI(s) \rightarrow 2AI^{3+}(aq) + 6e^{-3}$ $3Cu^{2+}(aq) + 6e^{-3} \rightarrow 3Cu(s)$

 $2\mathsf{Al}(s) + 3\mathsf{Cu}^{2+}(aq) \rightarrow 2\mathsf{Al}^{3+}(aq) + 3\mathsf{Cu}(s)$

7. Verify that the reaction is balanced both with respect to mass and with respect to charge:

$2\mathsf{Al}(s) + 3\mathsf{Cu}^{2+}(aq) \rightarrow 2\mathsf{Al}^{3+}(aq) + 3\mathsf{Cu}(s)$

Reactants	Products
2 AI	2 AI
3 Cu	3 Cu
+6 Charge	+6 Charge

$$\mathsf{Fe}^{2+}(aq) + \mathsf{Cr}_2\mathsf{O}_7^{2-}(aq) \to \mathsf{Fe}^{3+}(aq) + \mathsf{Cr}^{3+}(aq)$$

1. Assign oxidation states to all atoms and identify the substances being oxidized and reduced.

Oxidation numbers: Fe²⁺ is +2, Fe³⁺ is +3, Cr³⁺ is +3. For $Cr_2O_7^{2-}$: O is -2 and the sum must be -2, so: 7 · (-2) + 2x = -2, which gives x = 6. Thus Cr is +6.

Cr is reduced (+6 to +3) and Fe (+2 to +3) is oxidized.

- $\mathsf{Fe}^{2+}(aq) + \mathsf{Cr}_2\mathsf{O}_7^{2-}(aq) \to \mathsf{Fe}^{3+}(aq) + \mathsf{Cr}^{3+}(aq)$
- 2. Separate the overall reaction into two half-reactions: one for oxidation, one for reduction.
 - <u>Oxidation:</u> $Fe^{2+} \rightarrow Fe^{3+}$ (no further balancing in #3)
 - <u>Reduction:</u> $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ (not mass balanced)

- $\mathsf{Fe}^{2+}(aq) + \mathsf{Cr}_2\mathsf{O}_7^{2-}(aq) \to \mathsf{Fe}^{3+}(aq) + \mathsf{Cr}^{3+}(aq)$
- 3. Balance each half-reaction with respect to **mass** in the following order:
 - A. Balance all elements other than H and O: $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$
 - B. Balance O by adding H₂O: $Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$
 - C. Balance H by adding H⁺: $Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$

- $\mathsf{Fe}^{2+}(aq) + \mathsf{Cr}_2\mathsf{O}_7^{2-}(aq) \to \mathsf{Fe}^{3+}(aq) + \mathsf{Cr}^{3+}(aq)$
- 4. Balance each half-reaction with respect to charge by adding electrons:

<u>Oxidation:</u> $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

<u>Reduction</u>: Start with $Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$. So, +12 on the left and +6 on the right and balance as: $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$. Note that the consumption of H⁺ requires acidic solution!

$\mathsf{Fe}^{2+}(aq) + \mathsf{Cr}_2\mathsf{O}_7^{2-}(aq) \to \mathsf{Fe}^{3+}(aq) + \mathsf{Cr}^{3+}(aq)$

5. Make the number of electrons in both half-reactions equal by multiplying one or both half-reactions by a small whole number (here the first eq multiplied by 6):

 $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$ $Cr_2O_7^{2-} + 14H^+ + 6e^{-} \rightarrow 2Cr^{3+} + 7H_2O$

≣♪

Balancing redox reactions in acidic solution

$$\mathsf{Fe}^{2+}(aq) + \mathsf{Cr}_2\mathsf{O}_7^{2-}(aq) \to \mathsf{Fe}^{3+}(aq) + \mathsf{Cr}^{3+}(aq)$$

6. Add the two half-reactions together, canceling electrons and other species as necessary:

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

$\mathbf{6Fe^{2+}+Cr_2O_7^{2-}+14H^+} \rightarrow \mathbf{6Fe^{3+}+2Cr^{3+}+7H_2O}$

7. Verify that the reaction is balanced both with respect to mass and with respect to charge.

Reactants	Products
6 Fe	6 Fe
2 Cr	2 Cr
7 0	70
14 H	14 H
Charge +24	Charge +24

Balancing redox reactions in basic solution

3. Balance each half-reaction with respect to mass in the following order:

- A. Balance all elements other than H and O
- B. Balance O by adding H₂O
- C. Balance H by adding H⁺
- D. Neutralize H⁺ by adding enough OH⁻ to neutralize each H⁺. Add the same number of OH⁻ ions to each side of the equation. H⁺ + OH⁻ \rightarrow H₂O(*I*)

Practice example

Balance the following reaction in **basic** solution:

 $MnO_4(aq) + Br(aq) \rightarrow MnO_2(s) + BrO_3(aq)$

 $H_2O(I) + 2MnO_4(aq) + Br(aq) \rightarrow 2MnO_2(s) + BrO_3(aq) + 2OH(aq)$