CHEM102 Exam I (Jul 20 2009).

 $33\frac{1}{3}$ points / problem with maximum of 100 points.

1. For $2NaCl(aq) + Ag_2SO_4(aq) \rightarrow 2AgCl(s) + Na_2SO_4(aq)$ the following data was obtained at 298 K:

$[NaCl] (mol \ L^{-1})$	$[Ag_2SO_4] \pmod{L^{-1}}$	Initial rate of reaction (mol $L^{-1}s^{-1}$)
0.104	0.084	28.8
0.104	0.021	1.80
0.208	0.021	7.20

a) What is the rate law?

- b) What is the value of the rate constant $k_{298 \text{ K}}$ (where the subscript refers to temperature)?
- c) What rate law would you expect if this was an elementary reaction?
- d) If the pre-exponential factor A is independent of temperature and $k_{400 \text{ K}} = 10 \times k_{298 \text{ K}}$, what would be the activation energy E_A (the gas constant $R = 8.31451 \text{ J K}^{-1} \text{mol}^{-1}$)?

2. Consider the following elementary reaction: $NO_2(g) + NO_2(g) \rightarrow N_2O_4(g)$. The rate constant $k = 0.044 \text{ M}^{-1}\text{s}^{-1}$ is known.

- a) What is the reaction order with respect to NO_2 ?
- b) If the initial concentration of NO_2 is 0.200 M, what is the concentration of NO_2 after 10 minutes?
- c) What would then be the concentration of N_2O_4 after 10 minutes?
- d) How would you expect entropy to change in this reaction (and why)?
- 3. The formation of iron oxide follows the reaction at 298 K temperature:

$$4 \text{Fe}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{Fe}_2 \text{O}_3(s)$$

where $\Delta H_{\rm rxn}^{\circ} = -824.2$ kJ/mol and $\Delta S_{\rm rxn}^{\circ} = -549.7$ J/(K mol).

a) Calculate ΔG°_{rxn} . Can you predict spontaneity of the reaction using this thermodynamic variable?

- b) Calculate $\Delta S_{\text{universe}}^{\circ}$. Can you predict spontaneity of the reaction using this thermodynamic variable?
- c) Is there heat transfer involved in this reaction between the system and the surroundings? Calculate $q_{\rm sys}$ and $q_{\rm surr}$.
- d) Can you predict the sign of $\Delta S_{\rm rxn}^{\circ}$ from the chemical equation (and why)?