CHEM102 Exam II (Jul 31 2009).

 $33\frac{1}{3}$ points / problem with maximum of 100 points.

1.

a) $P_{\text{H}_2\text{S}}^{ini} = 100.0 \text{ torr} = 0.1316 \text{ atm}; P_{\text{H}_2\text{O}}^{eq} = 99.803 \text{ torr} = 0.1313 \text{ atm};$ $P_{\text{O}_2}^{ini} = 200.0 \text{ torr} = 0.2632 \text{ atm} (4 \text{ sig. figs.}).$ Write ICE table as follows:

	H_2S	O_2	SO_2	H_2O
Ι	$0.1316 \mathrm{atm}$	$0.2632 \mathrm{~atm}$	0 atm	0 atm
-	-x	$-\frac{3}{2}x$	+x	+x
Ε	0.1316 - x atm	$0.\bar{2}632 - \frac{3}{2}x$ atm	$x \operatorname{atm}$	$x \operatorname{atm}$

The equilibrium pressure of water gives x = 0.1313 atm. Write the expression for K_p :

$$K_p = \frac{P_{\rm SO_2}^{eq} \cdot P_{\rm H_2O}^{eq}}{P_{\rm H_2S}^{eq} \cdot \left(P_{\rm O_2}^{eq}\right)^{3/2}} = \frac{(0.1313)^2}{(0.1316 - 0.1313) \cdot (0.2632 - \frac{3}{2} \cdot 0.1313)^{3/2}} = 3370.0$$

- b) $K_p = K_c (RT)^{\Delta n} \Rightarrow K_c = K_p (RT)^{-\Delta n}$. $\Delta n = \text{products} \text{reactants} = 2 2.5 = -0.5$. Must use $R = 0.08206 \frac{\text{L atm}}{\text{mol K}}$ because this is compatible with the atm units used for K_p and L for K_c . Plugging in the numbers gives $K_c = 1.667 \times 10^4$ (with T = 298 K).
- c) The new equation is rearranged by multiplying both sides by 2 and then reversing the reactants and products. The first step corresponds to squaring K_p and the second taking $1/K_p$. Thus the new $K'_p = 1/K_p^2 = 8.8052 \times 10^{-8}$.
- d) $Q_p = \frac{P_{\text{SO}_2} \cdot P_{\text{H}_2\text{O}}}{P_{\text{H}_2\text{S}} \cdot P_{\text{O}_2}^{3/2}} = \frac{(0.1313 + 0.013158)(0.1313)}{(0.0003)(0.06625)^{3/2}} = 3708$. Since $Q_p > K_p$, the reaction proceeds from right to left to reach the new equilibrium.
- e) $\Delta G_{rxn}^{\circ} = -RT \ln (K_p) = -(8.314 \frac{\text{J}}{\text{mol K}}) \times (298 \text{ K}) \ln (3370) = -21.12 \text{ kJ/mol.}$

2.

- a) It can donate 1, 2, or 3 protons depending on the conditions (acceptor).
- b) $pK_a = -\log(K_a) \Rightarrow K_a = 10^{-pK_a}$. Inserting the pK_a values: $K_{a1} = 10^{-3.13} = 7.4 \times 10^{-4}, K_{a2} = 1.7 \times 10^{-5}, K_{a3} = 4.0 \times 10^{-7}$.

- c) $K_a \cdot K_b = 10^{-14}$ (at room temperature). Thus $K_b = \frac{10^{-14}}{K_a}$ and $K_{b1} = \frac{10^{-14}}{7.4 \times 10^{-4}} = 1.7 \times 10^{-11}$; $K_{b2} = 5.9 \times 10^{-10}$; $K_{b3} = 2.5 \times 10^{-8}$.
- 3.
 - a) Denote benzoic acid (weak acid) by BZH. To find out the pH, construct ICE table:

101	BZH	H_2O	BZ^-	H_3O^+			
Ι	1.0 M	_	0 M	0 M			
С	-x	—	+x	+x			
Ε	(1.0 - x) M	—	x M	$x \mathrm{M}$			
$K_a = \frac{x^2}{1-x} \approx x^2 \Rightarrow x = \sqrt{2.5 \times 10^{-5}} = 5.01 \times 10^{-3}$ (less than 5%)							
of 1; approximation OK). Since $[H_3O^+] = x = 5.01 \times 10^{-3} \text{ M}$ then							
$pH = -\log\left(\left[\mathrm{H}_{3}\mathrm{O}^{+}\right]\right) = 2.3.$							

- b) $pH + pOH = 14 \Rightarrow pOH = 14 pH$ (at room temperature). This gives pOH = 14 2.3 = 11.7.
- c) Note that H⁺ and H₃O⁺ are "synonyms" in water solutions. From the above $[H^+] = 5.01 \times 10^{-3} \text{ M}$ and $[OH^-] = 2.00 \times 10^{-12} \text{ M}$ because $K_w = [H_3O^+] \cdot [OH^-] = 10^{-14}$ (room temperature).