CHEM102 Exam II (Jul 31 2009).

 $33\frac{1}{3}$ points / problem with maximum of 100 points.

- 1. $H_2S(g) + \frac{3}{2}O_2(g) \rightleftharpoons SO_2(g) + H_2O(g)$ with at 298 K. (below 1 atm corresponds to 760 torr pressure)
 - a) Given the equilibrium partial pressure of $\rm H_2O$ as 99.803 torr, and the initial partial pressures of $\rm H_2S$ and $\rm O_2$ as 100.00 torr and 200.00 torr, respectively, what are the equilibrium partial pressures of $\rm H_2S$, $\rm O_2$, $\rm SO_2$, and $\rm H_2O$?
 - b) What are the values of K_p and K_c ?
 - c) If the chemical reaction is written as: $2SO_2(g) + 2H_2O(g) \rightleftharpoons 2H_2S(g) + 3O_2(g)$ What would be the value of K_p ?
 - d) If 10.000 torr of $SO_2(g)$ is added to the gas mixture, what would be the value of the reaction quotient Q and which way would the equilibrium shift?
 - e) Given K_p , what is ΔG_{rxn}° ?
- 2. Citric acid ($H_3C_6H_5O_7$) is a polyprotic acid, which has three different pK_a values: $pK_{a1}=3.13$, $pK_{a2}=4.77$, and $pK_{a3}=6.40$.
 - a) If citric acid acts as an acid, how many protons can it donate?
 - b) What are the corresponding equilibrium constants K_a ?
 - c) What are the corresponding K_b values?
- 3. Consider a 1.0 M hydrazoic acid solution. pK_a for hydrazoic acid is 4.60.
 - a) What is the pH?
 - b) What is the pOH?
 - c) What are the concentrations $[H^+]$ and $[OH^-]$?