1. Consider the reaction:

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g)$$

Estimate ΔG° at each temperature and predict whether or not the reaction is spontaneous. (Assume that ΔH° and ΔS° do not change too much within the given temperature range.)

Species	$\Delta H_f^\circ (kJ/mol)$	$\Delta S_f^\circ (J/mol)$
NO(g)	91.3	210.8
$O_2(g)$	0	205.2
$NO_2(g)$	33.2	240.1
(a) 298 K	(
(b) 715 K	ζ.	

(c) 855 K

2. Calculate ΔG for the following reaction at 25°C under the following conditions:

 $2 H_2S(g) + SO_2(g) \longrightarrow 3 S(s, rhombic) + 2 H_2O(g)$ $\Delta G^{\circ}_{rxn} = -102 \ kJ/mol$

 $P_{H_2S} = 2.00 \ atm, P_{SO2} = 1.50 \ atm, P_{H_2O} = 0.0100 \ atm$

3. Calculate the equilibrium constant for the following reaction at 298 K.

 $N_2O_4(g) \Longrightarrow 2 NO_2(g) \qquad \Delta G_{rxn}^\circ = 2.8kJ/mol$

4. Balance the following reaction in acidic solution.

 $Zn(s) + Sn^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Sn(s)$

5. Balance the following reaction in basic solution.

 $H_2O_2(aq) + ClO_2(aq) \longrightarrow ClO_2^-(aq) + O_2(g)$