1. Over the course of the reaction $3 H_2(g) + N_2(g) \longrightarrow 2 NH_3(g)$, the following data was obtained:

Time (min)	$[H_2] (mol/L)$	$[N_2]$ (mol/L)	$[NH_3] (mol/L)$
0	0.99	1.00	0.00
1	0.70	0.90	0.20
2	0.54	0.84	0.31
3	0.47	0.82	0.35

- (a) Calculate the average rates of change of [H₂], [N₂], and [NH₃] over the first 3.0 minutes of the reaction (include units).
- (b) Calculate the average reaction rate over the first 3.0 minutes of the reaction (include units).

- 2. What are the units of k for each type of reaction?
 - (a) zero-order
 - (b) first-order
 - (c) second-order

- 3. Consider the reaction: $X + Y \longrightarrow Z$. From the following data, obtained at 360 K:
 - (a) Determine the order of the reaction.
 - (b) Determine the initial rate of change of [X] when the concentration of X is 0.30 M and that of Y is 0.40 M.

Initial rate of disappearance of X (M/s)	[X] (M)	[Y] (M)
-0.053	0.10	0.50
-0.127	0.20	0.30
-1.02	0.40	0.60
-0.254	0.20	0.60
-0.509	0.40	0.30

4. This reaction is first order in N₂O₅ with a rate constant (at a given temperature) of $k = 0.053 \ s^{-1}$.

 $N_2O_5(g) \longrightarrow NO_3(g) + NO_2(g)$

- (a) Calculate the rate of the reaction when $[N_2O_5] = 0.055$ M.
- (b) What would the rate of the reaction be at the concentration indicated in part a if the reaction were second order? What about zero order? (Assume the same numerical value for *k*, but the units would be different, but you knew that already).

5. The rate constant for the second-order reaction

 $2 \operatorname{NOBr}(g) \longrightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$

is 0.80 $M^{-1}s^{-1}$ at $10\,{\rm ^{o}C}.$

- (a) Starting with a concentration of 0.086 M, calculate the concentration of NOBr after 22 s.
- (b) Calculate the half-lives when $[NOBr]_0 = 0.072 \text{ M}$ and $[NOBr]_0 = 0.054 \text{ M}$.

6. This reaction was monitored as a function of time:

 $A \longrightarrow B + C$

A plot of ln[A] versus time yields a straight line with slope of $-0.0045 \ s^{-1}$.

- (a) What is the value of the rate constant, *k*, for this reaction at this temperature?
- (b) Write the rate law for the reaction.
- (c) What is the half-life?
- (d) If the initial concentration of A is 0.250 M, what is the concentration after 225 s?