1. Identify the Bronsted-Lowry acid/base pairs (acid, base, conjugate base, conjugate acid) in the following reactions.

(a)
$$HNO_3(aq) + H_2O(\ell) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$$

(b)
$$CH_3NH_2(aq) + H_2O(\ell) \Longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$$

(c)
$$CO_3^{2-} + H_2O(\ell) \Longrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$$

- 2. Write the formula for the conjugate base of each acid.
 - (a) HSO₃(aq)
 - (b) HF(aq)
- 3. Write the formula for the conjugate acid of each base.
 - (a) $NH_3(aq)$
 - (b) $HSO_4^-(aq)$
- 4. Answer with the correct number of significant figures.
 - (a) $-log(2.3 \times 10^{-5}) =$
 - (b) $-log(1.45 \times 10^{-8} =$
 - (c) $10^{-1.6} =$
 - (d) $10^{-5.87} =$

5. HCO₃⁻ is amphoteric. Write a chemical reaction to show how it can act as an acid and another reaction to show how it can act as a base.

6. Calculate the missing components of the table (answer in the correct number of significant figures).

$[H_3O^+](M)$	[OH ⁻] (M)	pН	рОН	Acidic or Basic?
$3.5 imes 10^{-3}$				
0.0 / 10				
	$3.7 imes 10^{-7}$			
		4.05		
		4.25		
			2.92	

7. Like all equilibrium constants, the value of K_w depends on temperature. At body temperature (37 °C), $K_w = 2.4 \times 10^{-14}$. What are the [H₃O⁺] and pH of pure water at body temperature?