1. Determine the [H₃O⁺] and pH of 0.200 M lactic acid (HC₃H₅O₃, $K_a = 1.4 \times 10^{-4}$).

	$HC_3H_5O_3$	+ H ₂ O	\rightarrow	H_3O^+	+ $C_3H_5O_3^-$	
Ι	0.200 M	_		0	0	
С	-x	-		+x	+x	
Ε	0.200 - x	_		х	х	
$K_a = 1.4 \times 10^{-4} = \frac{x^2}{0.200 - x} \approx \frac{x^2}{0.200}$						

 $x=5.29\times 10^{-3}~M$ (quadratic equation)

 $pH = -\log[H_3O^+] = -\log(5.29 \times 10^{-3}) = 2.28$

2. Determine the pH of 0.015 M morphine, a weak base with $K_b = 1.6 \times 10^{-6}$. (Call morphine B in your equilibrium.)

$$\begin{aligned} &\stackrel{\text{HO}}{\longrightarrow} \stackrel{\text{HO}}{\longrightarrow} \stackrel$$

3. Calculate the pH of a solution of 0.500 M sodium acetate (for acetic acid, $K_a = 1.8 \times 10^{-5}$) Acetate is a weak base with $K_b = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$.

	CH ₃ COO ⁻	+	H ₂ O	<u></u>	CH ₃ COOH	+	OH-
Ι	0.500 M		-		0		0
С	-x		-		+x		+x
Е	0.500 - x		_		x		x

 $x = 1.67 \times 10^{-5} \ M \Rightarrow pOH = 4.78 \Rightarrow pH = 9.22$

4. Calculate the pH of 0.100 M oxalic acid (HOOC-COOH), a diprotic acid with $K_{a1} = 6.0 \times 10^{-2}$ and $K_{a2} = 6.1 \times 10^{-5}$. What is the concentration of the oxalate ion (C₂O₄²⁻)?

HO^	ОН						
	H ₂ A	+	H ₂ O	<u></u>	H_3O^+	+	HA ⁻
Ι	0.100 M		_		0		0
С	-X		_		+x		+x
Е	0.100 - x		_		х		x

 $K_{a1} = \frac{x^2}{0.100-x}$. Cannot use approximation here, but solve quadratic equation to get x = 0.053 M.

Second (weak) dissociation does not contribute much to the pH, so $pH = -\log(0.053) = 1.28$.

Second dissociation is very weak and leads to $[A^{2-}] = K_{a2} = 6.1 \times 10^{-5}$

5. Calculate the K_a value of a weak acid, (HA) if a 0.115 M solution has a pH of 3.29.

 $K_a = \frac{x^2}{0.115-x}$, but in this case, you know x because $[H_3O^+] = 10^{-pH} = 5.1 \times 10^{-4} M$ Then, $K_a = \frac{(5.1 \times 10^{-4})^2}{0.115-5.1 \times 10^{-4}} = 2.3 \times 10^{-6}$

6. Calculate the pH and percent ionization of 0.225 M benzoic acid ($K_a = 6.5 \times 10^{-5}$).

 $K_a = 6.5 \times 10^{-5} = \frac{x^2}{0.225 - x} \Rightarrow x = 0.00382 \Rightarrow pH = 2.42$ % ionization = $\frac{0.00382}{0.225} \times 100\% = 1.7\%$