1. Find the pH of a solution that is 0.195 M HC₂H₃O₂ and 0.125 M NaC₂H₃O₂, using both an ICE chart and the Henderson-Hasselbalch equation. (For HC₂H₃O₂, $K_a = 1.8 \times 10^{-5}$).

	$HC_2H_3O_2$	+ H ₂ O =	\longrightarrow H ₃ O ⁺	+ $C_2H_3O_2^-$					
Ι	0.195 M	_	0	0.125 M					
С	-X	—	+x	+x					
E	0.195 - x	_	х	0.125 + x					
$K_a = 1.8 \times 10^{-5} = \frac{x(0.125+x)}{0.195-x} \approx \frac{x(0.125)}{(0.195)}$									
$x = 2.81 \times 10^{-5} M = [\mathrm{H}_3\mathrm{O}^+]$									

x/0.125 = 0.02%, or x/0.195 = 0.01%, so clearly assumption was good.

$$pH = 4.55$$

Henderson-Hasselbalch: $pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right) = 4.74 + log\left(\frac{0.125}{0.195}\right) = 4.55$

2. Find the pH of a solution that is 0.255 M CH₃NH₂ and 0.135 M CH₃NH₃Br, using both an ICE chart and the Henderson-Hasselbalch equation. (For CH₃NH₂, $K_b = 4.4 \times 10^{-4}$).

	CH ₃ NH ₂	+ H ₂ O	\implies CH ₃ NH ₃ ⁺	+ OH ⁻	
Ι	0.225 M	_	0.135 M	0	
С	-x	_	+x	+x	
Е	0.225 - x	_	0.135 + x	х	
$\overline{K_b}$ =	$=\frac{x(0.135+x)}{0.225-x}$	$\approx \frac{x(0.135)}{0.225} =$	$\Rightarrow x = 8.31 \times 10^{-4} \text{ M}$	(or 7.27×1	10^{-4} M if solving quadratic
tion)				

 $pOH = 3.08 \Rightarrow pH = 10.92$ (or 3.14 and 10.86, respectively, when using quadratic equation)

Could also set up as the acid equilibrium and you should end up with the same answer.

Or: $pH = pK_a + \log\left(\frac{[B]}{[BH^+]}\right) = 10.64 + \log\left(\frac{0.255}{0.135}\right) = 10.92$ Remember: $pK_a + pK_b = pK_w = 14$

3. For the acetic acid / acetate buffer in Problem 1, write the pertinent chemical reactions that would occur if a strong acid were added and if a strong base were added.

For strong acid addition: $C_2H_3O_2^-(aq) + H_3O^+(aq) \longrightarrow HC_2H_3O_2(aq) + H_2O(\ell)$

For strong base addition: $HC_2H_3O_2(aq) + OH^-(aq) \longrightarrow C_2H_3O_2^-(aq) + H_2O(\ell)$

4. Calculate the molar ratio and the mass ratio of NaF to HF required to create a buffer with pH = 4.00. (For HF, $K_a = 3.4 \times 10^{-4}$)

$$pH = pK_a + \log\left(\frac{[F^-]}{[HF]}\right) \Rightarrow 4.00 = 3.47 + \log\left(\frac{[F^-]}{[HF]}\right)$$
$$\log\left(\frac{[F^-]}{[HF]}\right) = 0.53 \Rightarrow \frac{[F^-]}{[HF]} = 10^{0.53} = 3.39 = \frac{moles\ F^-}{moles\ HF} = \frac{moles\ NaF}{moles\ HF} \text{ (molar ratio).}$$

Molar mass of NaF = 41.99 g/mol, molar mass of HF = 20.01 g/mol.

 $\left(\frac{3.39 \text{ mol NaF}}{1 \text{ mol HF}}\right) \left(\frac{41.99 \text{ g/molNaF}}{20.01 \text{ g/molHF}}\right) = 7.11 \frac{\text{g NaF}}{\text{g HF}}$

- 5. Determine whether or not the mixing of each pair of solutions results in a buffer.
 - (a) 75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF \Rightarrow Buffer
 - (b) 150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl \Rightarrow Not a buffer
 - (c) 125.0 mL of 0.15 M CH₃NH₂; 120.0 mL of 0.25 M CH₃NH₃Cl \Rightarrow Buffer
- 6. A 100.0 mL buffer solution is 0.175 M HClO ($K_a = 2.9 \times 10^{-8}$) and 0.150 M in NaClO.
 - (a) What is the initial pH of this solution?
 - (b) What is the pH after addition of 0.00185 moles of HBr?
 - (c) What is the pH after addition of 0.00213 moles of NaOH?

Initial pH: $pH = pK_a + log\left(\frac{[ClO^-]}{[HClO]}\right) = 7.54 + log\left(\frac{0.150}{0.175}\right) = 7.47$

After addition of 0.00185 moles of strong acid (HBr): Start with 0.0150 moles of ClO⁻, 0.00185 moles will react with H_3O^+ , leaving 0.01315 mol ClO⁻. Start with 0.0175 moles of HClO, add 0.00185 moles, leaving 0.01935 mol HClO.

Then:
$$pH = 7.54 + log\left(\frac{0.01315 \ mol \ ClO^-/0.100 \ L}{0.01935 \ mol \ HClO/0.100 \ L}\right) = 7.37$$

After addition of 0.00213 moles of strong base (NaOH): Start with 0.0175 mol HClO. 0.00213 mol will react with OH^- , leaving 0.01537 mol HClO. Start with 0.0150 mol ClO⁻ and produce an additional 0.00213 moles during the reaction, resulting in 0.01713 mol ClO⁻.

Then:
$$pH = 7.54 + log\left(\frac{0.01713 \ mol \ ClO^-/0.100 \ L}{0.01537 \ mol \ HClO/0.100 \ L}\right) = 7.59$$