1. Find the pH of a solution that is 0.195 M HC₂H₃O₂ and 0.125 M NaC₂H₃O₂, using both an ICE chart and the Henderson-Hasselbalch equation. (For HC₂H₃O₂, $K_a = 1.8 \times 10^{-5}$).

2. Find the pH of a solution that is 0.255 M CH₃NH₂ and 0.135 M CH₃NH₃Br, using both an ICE chart and the Henderson-Hasselbalch equation. (For CH₃NH₂, $K_b = 4.4 \times 10^{-4}$).

3. For the acetic acid / acetate buffer in Problem 1, write the pertinent chemical reactions that would occur if a strong acid were added and if a strong base were added.

4. Calculate the molar ratio and the mass ratio of NaF to HF required to create a buffer with pH = 4.00. (For HF, $K_a = 3.4 \times 10^{-4}$)

- 5. Determine whether or not the mixing of each pair of solutions results in a buffer.
 - (a) 75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF
 - (b) 150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl
 - (c) 125.0 mL of 0.15 M CH₃NH₂; 120.0 mL of 0.25 M CH₃NH₃Cl
- 6. A 100.0 mL buffer solution is 0.175 M HClO ($K_a = 2.9 \times 10^{-8}$) and 0.150 M in NaClO.
 - (a) What is the initial pH of this solution?
 - (b) What is the pH after addition of 0.00185 moles of HBr?
 - (c) What is the pH after addition of 0.00213 moles of NaOH?