
Thermodynamics: Examples for chapter 2.

1. Metallic sodium reacts with water according to:

2Na + 2H2O → 2NaOH + H2

If a mole of sodium metal is added to water, how much work is done on
the atmosphere (i.e., open beaker; reversible process) by the subsequent
reaction if the temperature is constant at 25 ◦C? Assume that H2 is an
ideal gas.

Solution:

Na(s) + 2H2O(l) → NaOH(aq) +
1

2
H2(g)

One mole of Na produces half a mole of H2. Using the ideal gas law:

V =
nRT

P
=

0.5 × (8.314 J K−1 mol−1) × (298 K)

(101325 Pa)
≈ 0.0123 m3

The PV -work is given then by:

w = −P∆V = −(101325 Pa) × (0.0123 m3) = −1.24 kJ

2. Show that the differential df is inexact (a, b, c are constants).

df =
(

2ax2 + bxy
)

dx +
(

bx2 + 2cxy
)

dy

Does the corresponding line integral depend on the path? Furthermore,
show that differential df/x is exact.

Solution:
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Differential df = Mdx + Ndy is exact if
(

∂N(x,y)
∂x

)

y
=

(

∂M(x,y)
∂y

)

x
. Here

we have:

M = 2ax2 + bxy and N = bx2 + 2cxy

(

∂M

∂y

)

x

= bx and

(

∂N

∂x

)

y

= 2bx + 2cy

Because the partial derivatives are not equal, the differential is inexact.
Line integrals for inexact differentials depend on path in general. For
df/x we have:

M = 2ax + by and N = bx + 2cy

(

∂M

∂y

)

x

= b and

(

∂N

∂x

)

y

= b

Because the partial derivatives are equal, differential df/x is exact.

3. Show that the following differential is inexact:

df =
(

y2
− xy

)

dx − x2dy

Test the integrating factor 1
xy2 to see if it produces an exact differential.

Solution:

M = y2
− xy and N = −x2

(

∂M

∂y

)

x

= 2y − x and

(

∂N

∂x

)

y

= −2x

Because the partial derivatives are not equal, the differential is inexact.
If we divide the differential by xy2, we have:
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M =
1

x
−

1

y
and N = −

x

y2

(

∂M

∂y

)

x

=
1

y2
and

(

∂N

∂x

)

y

= −
1

y2

and hence differential df
xy2 is inexact (difference in sign only!).

4. The state of monoatomic ideal gas (n = 1 mol) is changed reversibly
as follows:

1
A
→ 2

B
→ 3

C
→ 1

where 1, 2, 3 and 4 refer to states and A, B and C to processes. Process
A is isothermal, B is isobaric and C is isochoric. The cycle is described
by the attached graph.

What are ∆U , ∆H, q and w after each process (A, B, C), temperatures
at points 1, 2, 3, and w for the whole cycle? Note that for an ideal gas
we have: Ū = 3

2
RT and H̄ = 5

2
RT .

Solution:
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(a) Isothermal process A. Temperature after A, denoted by T2, is given
by the ideal gas law:

T2 =
P2V2

nR
=

(2000 × 103 N m−2)(10−3 m3)

(1 mol)(8.314 N m mol−1 K−1)
= 240.6 K

Both U and H depend only on temperature for ideal gases. This
is an isothermal process and hence both ∆U and ∆H are zero.
The PV -work in this step is given by (see lecture notes):

wrev = −nRT ln

(

V2

V1

)

= − (1 mol)×
(

8.314 J mol−1 K−1
)

×(240.6 K)×ln

(

1 dm3

10 dm3

)

= 4.6 kJ

According to the first law of thermodynamics:

∆U = q + w ⇒ q = ∆U − w = 0 − 4.6 kJ = −4.6 kJ

(b) Isobaric process B. The temperature at 3 is given by the ideal gas
law:

T3 =
P3V3

nR
=

(2000 × 103 N m−2)(10−2 m3)

(1 mol)(8.314 N m mol−1 K−1)
= 2406 K

Changes in the internal energy and enthalpy are given by:

∆U =
3

2
nR∆T =

3

2
nR (T3 − T2)

= 1.5×(1 mol)×
(

8.314 J mol−1 K−1
)

×(2406 K − 240.6 K) = 27.0 kJ

∆H =
5

2
nR∆T = 45.0 kJ

The first law states: ∆U = q+w and thus if we know either q or w,
we can always calculate the other. In the isobaric case the work
can be obtained with Pext = P and dw = −PdV . Integration
of this equation gives: w = −P∆V = −(2000 × 103 Nm−2) ×
(10 × 10−3 m3

− 1.0 × 10−3 m3) = −18.0 kJ. And further q =
27.0 kJ − (−18.0 kJ) = 45.0 kJ.
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(c) Isochoric process C. The temperature at point 1 is given by the
ideal gas law:

T1 =
P1V1

nR
= 240.6 K

Changes in the internal energy and enthalpy are given by:

∆U =
3

2
nR∆T = 1.5 × (1 mol) ×

(

8.314 J mol−1 K−1
)

× (240.6 K − 2406 K) = −27.0 kJ

∆H =
5

2
nR∆T = 2.5 × (1 mol) ×

(

8.314 J mol−1 K−1
)

× (240.6 K − 2406 K) = −45.0 kJ

The volume is constant and hence w = 0 kJ. The first law gives
q = −27.0 kJ. The total work in the cycle is: wtot = wA + wB +
wC = (4.61 − 18.0 + 0.00) kJ = −13.4 kJ.

5. One mole of nitrogen (ideal gas) at 25 ◦C and 1 bar is expanded re-
versibly and isothermally to a pressure of 0.132 bar. (a) What is the
value of w? (b) What is the value of w if the nitrogen is expanded
against a constant external pressure of 0.132 bar?

Solution:

a) Based on the lecture notes, we have:

w = RT ln

(

P2

P1

)

=
(

8.314 J K−1 mol−1
)

×(298.15 K)×ln

(

0.132 bar

1 bar

)

= −5.03 kJ mol−1
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b) In (a) the pressure changes during the process. Here the external
pressure is constant and we can directly calculate:

w = −Pext∆V = −Pext (V2 − V1)

V1 =
nRT

P1

= 0.0248 m3 and V2 = 0.188 m3

⇒ w = −

(

0.132 × 105 N m−2
) (

0.188 m3
− 0.0248 m3

)

= −2.15 kJ mol−1

6. (a) Derive the equation for the work of reversible isothermal expansion
of a van der Waals gas from V1 to V2.

(b) A mole of CH4 expands reversibly from 1 to 50 L at 25 ◦C. Cal-
culate the work (in joules) assuming that the gas is ideal.

(c) A mole of CH4 expands reversibly from 1 to 50 L at 25 ◦C. Cal-
culate the work (in joules) assuming that the gas obeys the van
der Waals equation. For CH4(g), a = 2.283 L2 bar mol−2 and b =
0.04278 L mol−1.

Solution:

(a) PV -work of a van der Waals gas is given by:

P =
nRT

V − nb
−

an2

V 2

w = −

V2
∫

V1

PdV = −

V2
∫

V1

nRT

V − nb
dV +

V2
∫

V1

an2

V 2
dV

= −nRT ln

(

V2 − nb

V1 − nb

)

+ an2

(

1

V1

−
1

V2

)

(b) The correspondig ideal gas result gives:

w = −nRT ln

(

V2

V1

)

= − (1 mol)
(

8.314 J K−1mol−1
)

(298 K) ln

(

50 L

1 L

)

= −9697 J
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(c) Using the result in (a) we get:

w = −(1 mol)(8.314 J K−1 mol−1)(298 K) ln

(

(50 L) − (1 mol)(0.04278 L mol−1)

(1 L) − (1 mol)(0.04278 L mol−1)

)

+

[

(

2.283 L2 bar mol−2
)

×

(

10−6 m6

L2

)

×

(

105 Pa

bar

)]

×

(1 mol)2

(

1

(1 L) × (10−3L/m3)
−

1

(50 L) × (10−3L/m3)

)

= −9799 J + 224 J = −9575 J

This is the work done by the gas (negative). The amount of work done
on the surroundings is therefore 9575 J. Less work is done by methane
than an ideal gas because of intermolecular interactions.

7. Liquid water is vaporized at 10 ◦C and 1.013 bar in an open container
(reversible process). The heat of vaporization is 40.69 kJ mol−1. As-
sume that water vapor behaves like an ideal gas. What are the values
of (a) wrev per mole? (b) q per mole? (c) ∆Ū? (d) ∆H̄?

Solution:

(a) Assuming that water vapor is an ideal gas and that the volume of
liquid water is negligible, we have (for one mole):

wrev = −P∆V = −P
nRT

P
= −nRT

= −(1 mol)(8.314 J K−1 mol−1)(283.15 K) = −2.35 kJ

(b) The heat of vaporization is 40.69 kJ mol−1, which is the heat
absorbed q and has a positive sign. Thus q = 40.69 kJ mol−1.

(c) The first law of thermodynamics gives:

∆Ū = q+w = (40.69 kJ mol−1)+(−2.35 kJ mol−1) = 38.3 kJ mol−1
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(d) By using the values from (a) and (c), we can now calculate ∆H̄:

∆H̄ = ∆Ū +∆(PV ) = ∆Ū +P∆V = ∆Ū −wrev = 40.7 kJ mol−1

8. The heat capacities of a gas may be represented by the Shomate equa-
tion (see the NIST Chemistry Webbook):

C̄P = α + βT + γT 2 + δT 3 +
η

T 2

For N2 gas (between 298 K and 6000 K), α = 26.09200 J K−1 mol−1,
β = 8.218801× 10−3 J K−2 mol−1, γ = −1.976141× 10−6 J K−3 mol−1,
δ = 0.159274 × 10−9 J K−4 mol−1 and η = 0.044434 × 106 J K mol−1.
How much heat is required to heat one mole of N2 from 300 K to 1000
K?

Solution:

q =

T2
∫

T1

C̄P dT = αT2+
β

2
T 2

2 +
γ

3
T 3

2 +
δ

4
T 4

2−
η

T2

−αT1−
β

2
T 2

1−
γ

3
T 3

1−
δ

4
T 4

1 +
η

T1

When the constants are inserted in the above expression, we get q =
21.506 kJ mol−1.

9. A mole of argon (ideal gas) is allowed to expand adiabatically and
reversibly from a pressure of 10 bar and 298.15 K to 1 bar. What is
the final temperature and how much work is done on the argon gas?

Solution:

Recall the following equations from the lecture notes:

T2

T1

=

(

P2

P1

)(γ−1)/γ

where γ =
C̄P

C̄V
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For an ideal gas we have:

C̄V =
3

2
R and C̄P =

5

2
R ⇒ γ = 5/3

Now we can solve for T2:

T2 = T1

(

P2

P1

)(γ−1)/γ

= (298.15 K)

(

1 bar

10 bar

)2/5

= 118.70 K

The process is adiabatic which means that q = 0. The first law then
gives ∆U = w. Since

(

∂U
∂V

)

T
= 0 for ideal gases, we have:

dU =

(

∂U

∂T

)

V

dT = CV dT

⇒ w = ∆U =

T2
∫

T1

CV dT =
3

2
R (T2 − T1)

=
3

2
×

(

8.314 J K−1 mol−1
)

× (118.70 K − 298.15 K) = −2238 J mol−1

10. Calculate ∆rH
◦ at 298 K for:

H2(g) + F2(g) → 2HF(g)

H2(g) + Cl2(g) → 2HCl(g)

H2(g) + Br2(g) → 2HBr(g)

H2(g) + I2(g) → 2HI(g)

Use the data available in the NIST Chemistry Webbook
(http://webbook.nist.gov/chemistry/).

Solution:

We use the following equation (see lecture notes):
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∆rH
◦ =

Ns
∑

i=1

vi∆fH
◦

i

By looking up the data from the table and using this equation, we get:

2×(−273.30 kJ mol−1)−(0 kJ mol−1)−(0 kJ mol−1) = −546.6 kJ mol−1

2×(−92.31 kJ mol−1)−(0 kJ mol−1)−(0 kJ mol−1) = −184.62 kJ mol−1

2×(−36.29 kJ mol−1)−(30.91 kJ mol−1)−(0 kJ mol−1) = −103.49 kJ mol−1

2×(26.50 kJ mol−1)−(62.42 kJ mol−1)−(0 kJ mol−1) = −9.42 kJ mol−1

11. One gram of liquid benzene is burned in an adiabatic bomb calorimeter.
The temperature before ignition was 20.826 ◦C, and the temperature
after the combustion was 25.000 ◦C. The heat capacity of the bomb, the
water around it, and the contents of the bomb before the combustion
was 10 000 J K−1. Calculate ∆fH

◦ for C6H6(l) at 298.15 K from these
data. Assume that the water produced in the combustion is in the
liquid state, the carbon dioxide produced in the combustion is in the
gas state and all gases behave according to the ideal gas law. The
combustion reaction is:

2C6H6(l) + 15O2(g) → 12CO2(g) + 6H2O(l)

Solution:

Even though this is called adiabatic, there is heat exchange between
the sample (liquid benzene; system) and the surrounding water bath
around it. The adiabaticity means that there is no thermal contact
between the bath and the rest of the world. The total volume of the
system is constant, which means that w = P∆V = 0 and ∆U = q.
Thus the heat released to the bath must correspond to the change in
internal energy of the system. The heat capacity of the system+bath
was given, so we can relate the temperature increase in the bath to the
amount of heat released from the system:

10



∆U = q = −

T2
∫

T1

Csystem+bathdT = −Csystem+bath∆T

= −

(

10 kJ K−1
)

× (4.174 K) = −41.74 kJ−1

where the minus signifies that heat flows out of the system). Since
the molecular weight of benzene is 78 g mol−1 and we had 1 gram of
benzene, we finally get: ∆U = −3255.7 kJ mol−1.

In order to get ∆H for the reaction, one must consider the fact that
gaseous products are consumed/formed. Let’s first write the equation
in standard form:

C6H6(l) + 7.5O2(g) → 6CO2(g) + 3H2O(l)

So we see that when one mole of benzene burns, 7.5 moles of O2 gas is
consumed and 6 moles of CO2 is formed. This means that the pressure
in the bomb is not constant. Recall that H = U +PV and hence ∆H =
∆U + ∆(PV ) = ∆U + P∆V + V ∆P . The volume is constant, so we
don’t need to consider the P∆V term. If we consider that both O2 and
CO2 are ideal gases (the total amount of gas is denoted by ngas), then we
can write ∆(PV ) = R∆(ngasT ) = RT∆ngas + Rngas∆T ≈ RT∆ngas.
In this example, ∆n = 6.0 − 7.5 = −1.5. Thus we have (T = 298 K):

∆H̄298 K = ∆Ū+
RT∆ngas

1 mol
= −3255.7 kJ mol−1

−1.5RT/mol = −3259.4 kJ mol−1

From the NIST Chemistry Webbook we have the following values:
∆Hf (CO2(g)) = −393.51 kJ mol−1, ∆Hf (H2O(l)) = −285.83 kJ mol−1

and ∆Hf (O2(g)) = 0 kJ mol−1. If we write the reaction using heats of
formation, we have:

∆Hf (C6H6(l))+7.5×∆Hf (O2(g))+∆H298 K = 6×∆Hf (CO2(g))+3×∆Hf (H2O(l))

Note that the ’−’ sign in ∆H298 K signifies that the system (benzene)
is loosing energy and hence when we place it in the above equation
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∆H298 K has a positive sign when it is put on the left hand side and
negative when put on the right hand side. On the right hand side it
would yield positive number, which states that energy is being released.
By solving for ∆Hf (C6H6(l)) from this equation we get:

∆Hf (C6H6(l)) = 6 × (−393.51 kJ mol−1) + 3 × (−285.83 kJ mol−1)

−(−3259.4 kJ mol−1) = 40.9 kJ mol−1

(The literature value is ca. 49 kJ mol−1 – not a great measurement
accuracy...)

12


