
Thermodynamics: Examples for chapter 3.

1. Show that (∂CV /∂V ) = 0 for a) an ideal gas, b) a van der Waals gas
and c) a gas following P = nRT

V −nb
. Assume that the following result

holds:

(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P

Hint: In b) and c), differentiate with respect to both temperature and
volume and recall that for exact differentials the order of differentiation
can be exchanged.

Solution:

The lecture notes give: CV =
(

∂U
∂T

)

V
. Differentiate this equation with

respect to volume:

(

∂CV

∂V

)

T

=

(

∂

∂V

(

∂U

∂T

)

V

)

T

=

(

∂

∂T

(

∂U

∂V

)

T

)

V

By using the relation given in the problem, we can write this as:

(

∂CV

∂V

)

T

=

(

∂

∂T

(

∂U

∂V

)

T

)

V

=

(

∂ (−P + T (∂P/∂T )V )

∂T

)

V

= T

(

∂2P

∂T 2

)

V

Next we consider the various equations of state:

a) Ideal gas. P = nRT/V from which the second derivative of pres-
sure (see above) is zero and therefore

(

∂CV

∂V

)

T
= 0.

b) For a van der Waals gas we have: P = nRT
V −nb

− n2a
V 2 . Differentiation

of P with respect to T once just gives nR/(V − nb). This does
not depend on T and hence

(

∂CV

∂V

)

T
= 0.

c) Differentiation of P twice with respect to T again gives zero and
hence

(

∂CV

∂V

)

T
= 0.
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2. Show that qrev is not a state function (i.e. dqrev is not exact) for a gas
obeying the equation of state P = RT

V̄ −b
, but that dqrev/T is. Assume a

reversible process and consider only PV -work. Hint: you may proceed
as follows:

(a) Use the previous problem to calculate (∂U/∂V )T .

(b) Use dU =
(

∂U
∂T

)

V
dT +

(

∂U
∂V

)

T
dV to calculate dU .

(c) Use the first law of thermodynamics to get an expression for dq.

(d) Substitute the equation of state into the above expression.

(e) Apply the exactness test for differentials (dq = M(V, T )dT +
N(V, T )dV ). Use results from the previous problem to differenti-
ate M with respect to V .

(f) Repeat the same calculation for dq/T .

Solution:

By using the result given in the first problem, we can obtain
(

∂U
∂V

)

T
= 0.

The total differential for dU now gives dU =
(

∂U
∂T

)

V
dT and hence dU =

CV dT . The first law of thermodynamics, dU = dq + dw, gives dq =
CV dT−dw. Considering PV -work, we can write: dq = CV dT +PextdV .
Because the process is reversible, Pext = P and dq = CV dT +PdV . For
dq to be exact we should have:

(

∂CV

∂V

)

T

=

(

∂P

∂T

)

V

From the first problem we know that the left hand side is zero. The
right hand side, however, is not zero:
(

∂P
∂T

)

V
= nR

V −nb
6= 0

Thus dq is inexact. For dq/T we have: dq

T
= CV

T
dT + P

T
dV . Now the

exactness test gives:

(

∂CV /T

∂V

)

T

= 0 (T is constant)
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(

∂(nR/(V − nb))

∂T

)

V

= 0 (the expression does not depend on T )

Thus dq/T is exact.

3. An ideal gas initially at (P1, V1, T1) undergoes a reversible isothermal
expansion to (P2, V2, T1) (path 1). The same change in state of the gas
can be achieved by allowing it to expand adiabatically from (P1, V1, T1)
to (P3, V2, T2) and then heating it at constant volume to (P2, V2, T1)
(path 2). Note that T2 has not been specified and you should find
an equation that determines it. Show that the entropy change for
the reversible isothermal expansion (path 1) is the same as the sum
of the entropy changes in the reversible adiabatic expansion and the
reversible heating (path 2). Because the two paths give the same result,
it is probable that the integral is independent of path. This is not a
complete proof – why?

Solution:

Path 1: First we recall that for an ideal gas U = 3

2
nRT (see lecture

notes). The temperature is constant along this path and thus change
in internal energy must be zero. The first law of thermodynamics now
states that ∆U = qrev + wrev and hence qrev = −wrev. Recall the
following equation from the lecture notes:

wrev = −nRT1 ln

(

V2

V1

)

⇒ qrev = nRT1 ln

(

V2

V1

)

Using the definition of entropy gives:

∆S =
qrev

T1

= nR ln

(

V2

V1

)

Path 2: First consider the first segment from (P1, V1, T1) to (P3,
V2, T2). The expansion is adiabatic (i.e. no heat exchange with the
surroundings) and hence qrev = 0. For this reason the change in entropy
is also zero (∆S = qrev/T = 0). The final temperature in an adiabatic
expansion is determined by integrating CV

dT
T

= −nRdV
V

(see lecture
notes):
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T2
∫

T1

CV

T
dT = −nR

V2
∫

V1

dV

V
= −nR ln

(

V2

V1

)

Along the second segment (P3, V2, T2) to (P2, V2, T1), we have a con-
stant volume process. The lecture notes now give dqrev = CV dT . The
definition of entropy is dS = dqrev

T
and thus:

dS =
CV dT

T
⇒ ∆S =

T1
∫

T2

CV dT

T
= −

T2
∫

T1

CV dT

T

Comparison of this with the expression determining T2 along the first
segment, gives the final result:

∆S = nR ln

(

V2

V1

)

This is the same result that was obtained along path 1. For a complete
proof of exactness, one would have to use the exactness test or consider
infinitely many paths (or rather, the exactness test).

4. Water is vaporized reversibly at 100 ◦C and 1.01325 bar. The heat
of vaporization is 40.69 kJ mol−1. a) What is the value of ∆S for
the water? b) What is the value of ∆S for the water plus the heat
reservoir at 100 ◦C? The heat reservoir is thermally isolated from its
surroundings.

Solution:

a) ∆SH2O = q

T
= 40.69 kJ mol

−1

373.13K
= 109.04 J K−1 mol−1. Note that +

sign means that water receives heat.

b) The reservoir loses heat to water exactly the same amount as
above. The change in entropy for the heat reservoir is −q/T =
−109.04 J K−1 mol−1.
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Note: Since water + heat reservoir is isolated from the rest of the world,
the total change its entropy is 0. The total entropy in the system is
conserved.

5. Assuming that CO2 is an ideal gas, calculate ∆H◦ and ∆S◦ for the
following process:

CO2(g, 298.15 K, 1 bar) → CO2(g, 1000 K, 1 bar)

Consider 1 mol of gas and a reversible process. Given: C̄◦

P (T ) =
26.648 + 42.262 × 10−3T − 142.4 × 10−7T 2 (units: J K−1 mol−1).

Solution:

Here ◦ refers to the standard state. For gases this is 1 bar pressure
but note that this does not specify temperature. The overbar denotes
that these are molar quantities (i.e. per mole). To calculate change in
enthalpy, we integrate the heat capacity over temperature (see lecture
notes):

∆H̄◦ =

T2
∫

T1

C̄◦

P dT =

1000 K
/

298.15 K

[

26.648 × T +

(

42.262 × 10−3

2

)

T 2 +

(

−142.40 × 10−7

3

)

T 3

]

= 33.34 kJ mol−1

Furthermore, at constant pressure we can apply equations: dq = CP dT
and dS = dqrev/T = CP /TdT :

∆S̄◦ =

T2
∫

T1

C̄◦

P

T
dT =

1000 K
/

298.15 K

[

26.648 × ln(T ) + 42.262 × 10−3T −

(

142.4 × 10−7

2

)

T 2

]

= 55.42 J K−1 mol−1
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6. Ammonia (considered to be an ideal gas) initially at 25 ◦C and 1 bar
pressure is heated at constant pressure until the volume has trebled.
Assume reversible process. Calculate: a) q per mole, b) w per mole, c)
∆H̄, d) ∆Ū , e) ∆S̄ given C̄P = 25.895+32.999×10−3T−30.46×10−7T 2

(in J K−1 mol−1).

Solution:

Tripling of the ideal gas volume (PV1 = nRT1) leads to T = P (3V1)/(nR),
which means that the temperature will be three times higher; T2 = 3T1.
Note that pressure is constant.

a) q =
T2
∫

T1

C̄P dT =
894 K
∫

298 K

(25.895 + 32.999 × 10−3T − 30.46 × 10−7T 2) dT =

26.4 kJ mol−1.

b) w = −P∆V̄ = −R∆T = −
(

8.314 J K−1 mol−1
)

× (596 K) =

−4.96 kJ mol−1.

c) Because pressure is constant, we have ∆H̄ = qP = 26.4 kJ mol−1.

d) ∆Ū = q + w = (26.4 − 4.96) kJ mol−1 = 21.4 kJ mol−1.

e) ∆S̄ =
T2
∫

T1

C̄P

T
dT =

894 K
∫

298 K

(

25.895
T

+ 32.999 × 10−3 − 30.46 × 10−7T
)

dT =

46.99 J K−1 mol−1.

7. Three moles of an ideal gas expand isothermally and reversibly from
90 L to 300 L at 300 K. a) calculate ∆U , ∆S, w and q for this system,
b) calculate ∆Ū , ∆S̄, w per mole and q per mole, c) If the expansion
is carried out irreversibly by allowing the gas to expand into and evac-
uated container, what are the values of ∆Ū , ∆S̄, w per mole and q per
mole?

Solution:

a) Change in internal energy is zero because the gas is ideal. Recall
that the internal energy for an ideal gas depends only on temper-
ature. Here we have an isothermal process and hence no change
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in internal energy occurs, ∆U = 0. Note also that the 1st law now
states that q = −w. For an isothermal process (see the lecture
notes) we have:

wrev = −nRT ln

(

V2

V1

)

⇒ qrev = nRT ln

(

V2

V1

)

= (3 mol)×
(

8.314 J K−1 mol−1
)

×(300 K) ln

(

300 L

90 L

)

= −9.01 kJ

and q = 9.01 kJ. By using the definition of entropy, we can calcu-
late the change in entropy:

∆S =
qrev

T
=

−9.01 kJ

300 K
= 30.03 J K−1

b) Divide everything by 3 mol to get per mole quantities:

∆Ū = 0 kJ mol−1, ∆S̄ = 10.01 J K−1 mol−1,

w = −3.00 kJ mol−1, q = 3.00 kJ mol−1

c) Since the temperature is constant, we have ∆Ū = 0 . Since the
gas is expanding into vacuum, Pext = 0 and thus w = 0. By the
first law, q = 0. The entropy is the same as in b) because its
value depends only on endpoints of the path. Note that q along
the present irreversible path cannot be used in calculating entropy
– one must always use a reversible path (for example that in b)
above). For this reason ∆S̄ = 10.01 J K−1 mol−1, which is the
same value as in b).

8. An ideal gas at 298 K expands isothermally from a pressure of 10 bar to
1 bar. What are the values of w per mole, q per mole, ∆Ū , ∆S̄ in the
following cases? a) The expansion is reversible, b) The expansion is free
(irreversible), (c) The gas and its surroundings form an isolated system,
and the expansion is reversible and d) The gas and its surroundings
form an isolated system, and the expansion is free (irreversible).

Solution:
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a) This is a reversible process and constant temperature implies that
∆Ū = 0. Also the enthalpy change for an ideal gas depends only
on temperature ∆H̄ = 0. By using the 1st law and the expression
for reversible expansion (see lecture notes), we get:

wrev = −RT ln

(

V2

V1

)

= −RT ln

(

P2

P1

)

= −qrev

By plugging in the values, we get wrev = −5.71 kJ mol−1 and
qrev = 5.71 kJ mol−1. Now the definition of entropy gives the
entropy change:

∆S̄ =
qrev

T
= 19.1 J K−1 mol−1

b) Irreversible process (free expansion). No external pressure – no
work done (w = 0). Thus by the first law q = 0 (i.e. no heat
exchanged with the surroundings) since ∆Ū = 0 and ∆H̄ = 0.
Entropy depends only on the endpoints of the path and hence
∆S̄ = qrev

T
= 19.1 J K−1 mol−1, where qrev is from part a). Note

that only reversible paths can be used in calculating entropy!

c) Isolated system, which here means that “system + surroundings”
is isolated from the rest of the world. For a reversible process we
have dStot = dSsyst + dSsurr = 0. For the system we have:

dSsyst =
dqrev

T
and for the surroundings dSsurr = −

dqrev

T

Since temperature is constant, ∆U = 0 and ∆H = 0. Therefore:

qrev = −w = RT ln

(

P2

P1

)

(from previous calculations)

Thus ∆Ssyst = R ln(P2/P1) and ∆Ssurr = −R ln(P2/P1). Thus
the total change of entropy (system + surroundings) is zero. Also
qtot = qsys + qsurr = RT ln(P2/P1) − RT ln(P2/P1) = 0. For the
same reason, the total work wtot = wsys + wsurr = 0. Note that
the system + surroundings is isolated from the rest of the world
and therefore the total change in heat (qtot) and work (wtot) must
clearly be zero.
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d) If we want to calculate the entropy change for the system, we
need a reversible path for the calculation. Above this was done:
∆Ssyst = R ln(P2/P1). In free expansion, no work is done, wsys =
0 (and wsurr = 0). Since ∆U = wsys+qsys and ∆U = 0, qsys = 0 as
well (also then qsurr = 0). Thus the system is not interacting with
the surroundings at all in this process. This means that the en-
tropy of the surroundings does not change either, ∆Ssurr = 0. The
total entropy is then ∆Stot = ∆Ssyst + ∆Ssurr = R ln(P2/P1) =
19.1 J K−1 mol−1.

9. One mole of gas A at 1 bar and one mole of gas B at 2 bar are sep-
arated by a partition and surrounded by a heat reservoir (i.e. the
temperature is constant). When the partition is withdrawn, how much
does the entropy change? Both gases behave according to the ideal
gas law. Hint: consider the calculation in three steps: (I) the initial
entropy difference from standard state, (II) change in entropy due to
expansion/compression of gases at constant temperature and finally
(III) entropy change due to mixing of the gases.

Solution:

Note that the pressures of the two gases are different and thus the
results in the lecture notes cannot be directly applied.

I The initial (i.e. before mixing) entropies for the gases are:

SA = S◦

A − nR ln

(

P ini
A

P ◦

A

)

= S◦

A − nR ln

(

1 bar

1 bar

)

= S◦

A

SB = S◦

B − nR ln

(

P ini
B

P ◦

B

)

= S◦

B − nR ln (2)

II Let both gases expand from their initial pressures to the final
pressure at constant temperature. This changes entropy of both
gases according to:

SA = S◦

A − nR ln

(

Ptotal

P ◦

A

)

and SB = S◦

B − nR ln

(

Ptotal

P ◦

B

)
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where Ptotal is the final pressure after mixing. The final volume
after mixing is:

Vtotal = VA + VB =
nRT

PA

+
nRT

PB

=
nRT

PA

+
nRT

2PA

=
3nRT

2PA

The total pressure after mixing is then:

Ptotal =
2nRT

Vtotal

=
4

3
PA =

4

3
bar

The entropy change due to expansion for both gases is:

SA = S◦

A − nR ln

(

4

3

)

and SB = S◦

B − nR ln

(

4

3

)

Combining 1 and 2, we have: ∆SA = −nAR ln
(

4

3

)

and ∆SB =
−nBR

(

ln
(

4

3

)

− ln(2)
)

.

III Finally we must include the entropy change due to mixing (n = 1):

∆mixS = −R ln

(

1 mol

2 mol

)

− R ln

(

1 mol

2 mol

)

= −2R ln

(

1

2

)

The total entropy change is then (“1 + 2 + 3”):

∆Stotal = ∆SA+∆SB+∆Smix = −2R ln

(

4

3

)

+R ln(2)−2R ln

(

1

2

)

= 12.51 J K−1 mol−1

10. Calculate the change in molar entropy of aluminum that is heated from
600 ◦ to 700 ◦C. The melting point of aluminum is 660 ◦C, the heat of
fusion is 393 J g−1 (the molar mass for aluminum is 27 g mol−1), and
the heat capacities at constant pressure of the solid and the liquid may
be taken as 31.8 J K−1 mol−1 and 34.4 J K−1 mol−1 (independent of
temperature), respectively.
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Solution:

Note that 600 ◦C is 873 K, 660 ◦C is 933 K, and 700 ◦C is 973 K. Use
the following equation (see lecture notes):

∆S̄ =

Tfusion
∫

Tinitial

CP (s)

T
dT +

∆Hfusion

Tfusion

+

Tfinal
∫

Tfusion

CP (l)

T
dT

= CP (s) ln

(

Tfusion

Tinitial

)

+
∆Hfusion

Tfusion

+ CP (l) ln

(

Tfinal

Tfusion

)

= (31.8 J K−1 mol−1) ln

(

933 K

873 K

)

+
(27 g mol−1)(393 J g−1)

933 K

+(34.3 J K−1 mol−1) ln

(

973 K

933 K

)

= 19.92 J K−1 mol−1

11. Steam is condensed at 100 ◦C, and the water is cooled to 0 ◦C and frozen
to ice. What is the molar entropy change of the water? Consider that
the average specific heat of liquid water is 4.2 J K−1 g−1 (the molar
mass of water is 18.016 g mol−1). The enthalpy of vaporization at the
boiling point and the enthalpy of fusion at the freezing point are 2258.1
J g−1 and 333.5 J g−1, respectively.

Solution:

Use the same cycle as in the previous problem (note that the cycle
goes from high temperature to low temperature and thus the signs are
reversed!):

∆S̄ = −
∆Hvap

Tvap

−

373.15 K
∫

273.15 K

CP (l)

T
dT−

∆Hfus

Tfus

= −

(

2258.1 J g−1
) (

18.016 g mol−1
)

373.15 K
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−
(

4.2 J K−1 mol−1
)

×
(

18.016 g mol−1
)

× ln

(

373.15 K

273.15 K

)

−

(

333.5 J g−1
) (

18.016 g mol−1
)

273.15 K
= −154.4 J K−1 mol−1

12. Calculate the increase in the molar entropy of nitrogen when it is heated
from 25 ◦C to 1000 ◦C at constant pressure with: C̄P = 26.9835 +
5.9622 × 10−3T − 3.377 × 10−7T 2 in J K−1 mol−1.

Solution:

Nitrogen is gaseous in the temperature range. The entropy change is
then given by:

∆S̄ =

1273.15 K
∫

298.15 K

CP (g)

T
dT =

1273.15 K
/

298.15 K

(

26.9835 ln(T ) + 5.9622 × 10−3T −
3.377 × 10−7

2
T 2

)

= 44.73 J K−1 mol−1
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