
Thermodynamics: Examples for chapter 6.

1. The boiling point of hexane at 1 atm is 68.7 ◦C. What is the boiling
point at 1 bar? The vapor pressure of hexane at 49.6 ◦C is 53.32 kPa.
Assume that the vapor phase obeys the ideal gas law and that the
molar volume of the liquid is negligible compared to the molar volume
of gas.
Solution:

First we need to calculate ∆vapH. The Clausius-Clapeyron equation
in the lecture notes gives (T1 = 49.6 ◦C = 322.8 K, P1 = 53.32 kPa;
T2 = 68.7 ◦C = 341.9 K, P2 = 1 atm = 101.325 kPa):

ln

(
P2

P1

)

=
∆vap × (T2 − T1)

RT1T2

⇒ ∆vapH =
RT1T2

T2 − T1

ln

(
P2

P1

)

= 30.850 kJ mol−1

Now that we know ∆vapH, we can proceed in calculating T1 when
P1 = 1 bar = 100 kPa and T2 & P2 are given above:

T1 =
T2∆vapH

RT2 ln (P2/P1) + ∆vapH

=
(341.9 K)

(
30850 J mol−1

)

(341.9 K)
(
8.3145 J K−1 mol−1

)
ln

(
101.325 kPa

100 kPa

)
+

(
30850 J mol−1

)

= 341 K

2. Liquid mercury has a density of 13.690 g cm−3 and solid mercury 14.193
g cm−3, both measured at the melting point (−38.87 ◦C) and 1 bar
pressure. The heat of fusion is 9.75 J g−1. Calculate the melting points
of mercury under a pressure of (a) 10 bar and (b) 3540 bar. The
experimentally observed melting point under 3540 bar is −19.9 ◦C.
Solution:

Apply the Clapeyron equation (see lecture notes):

dP

dT
=

∆fusH

T∆V̄
=

∆fusH

T
(
V̄l − V̄s

) ⇒
∆P

∆T
≈

∆fusH

T
(
V̄l − V̄s

)
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⇒
∆T

∆P
≈

T
(
V̄l − V̄s

)

∆fusH
⇒ ∆T ≈ ∆P ×

T
(
V̄l − V̄s

)

∆fusH

The following were given: ∆fusH = 9.75 J g−1, V1 = 1/ρ = 0.07304
cm3 g−1 = 7.304 × 10−8 m3g−1, Vs = 7.064 × 10−8 m3g−1, T = −38.87
◦C = 234.3 K.

In (a) ∆P = 10 bar − 1 bar = 9 bar = 9 × 105 Pa and in (b) ∆P =
3540 bar− 1 bar = 3539 bar = 3539× 105 Pa. Inserting the numerical
values, we get (a) ∆T = 0.056 K, which implies Tb = −38.87◦C +
0.06◦C = −38.81◦C. In (b) we have: ∆T = 22.0 K, which implies
Tb = −38.87◦C + 22.0◦C = −16.9◦C.

3. From the ∆rG
◦ (3110 J mol−1 for the gas) of Br2(g) at 25 ◦C, calculate

the vapor pressure of Br2(l). The pure liquid at 1 bar and 25 ◦C is
taken as the standard state (e.g., ∆fG

◦ = 0 for the liquid). Assume
that Br2(g) follows the ideal gas law.
Solution:

The reaction is: Br2(l) = Br2(g). ∆rG
◦ for this reaction is given

by the difference in the standard Gibbs formation energies: ∆rG
◦ =

∆fG
◦(Br2(g)) − ∆fG

◦(Br2(l)) = 3110 J mol−1. Based on the lecture
notes:

∆rG
◦ = −RT ln(K) with K =

a(Br2(g))

a(Br2(l))
︸ ︷︷ ︸

=1

=
PBr2

P ◦

Solving this equation for PBr2
gives:

PBr2
= P ◦

× exp

(

−
∆rG

◦

RT

)

= (1 bar)

× exp

(

−
3110 J mol−1

(
8.314 J K−1 mol−1

)
(298.15 K)

)

= 0.285 bar

4. A binary mixture of A and B is in equilibrium with its vapor at constant
temperature and pressure. Prove that µA(g) = µA(l) and µB(g) =
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µB(l) by starting with G = G(g)+G(l) and the fact that dG = 0 when
infinitesimal amounts of A and B are simultaneously transferred from
the liquid to the vapor.
Solution:

Because G = G(g)+G(l) and dG = 0, we have: dG = dG(g)+dG(l) =
0. Furthermore, for both liquid and gas, we have:

dG(l) = µA(l)dnA(l) + µB(l)dnB(l)

dG(g) = µA(g)dnA(g) + µB(g)dnB(g)

Because dnA(l) = −dnA(g) and dnB(l) = −dnB(g), we get:

dG = dG(l)+dG(g) = (µA(g) − µA(l)) dnA(g)+(µB(g) − µB(l)) dnB(g) = 0

Both dnA(g) and dnB(g) can be varied independently, which means
that the coefficients in front of them must both be zero:

µA(g)−µA(l) = 0 and µB(g)−µB(l) = 0 ⇒ µA(g) = µA(l) and µB(g) = µB(l)

5. One mole of benzene (component 1) is mixed with two moles of toluene
(component 2). At 20 ◦C, the vapor pressures of benzene and toluene
are 51.3 and 18.5 kPa, respectively. (a) As the pressure is reduced, at
what pressure will boiling begin? (b) What will be the composition of
the first bubble of vapor? Assume that the mixture follows Raoult’s
law and that the gas phase is ideal.
Solution:

(a) Based on the lecture notes: P = P ∗

2
+ (P ∗

1
− P ∗

2
) x1 where P

is the total vapor pressure of the liquid and P ∗

1
and P ∗

2
are the

vapor pressure of pure liquids 1 and 2, respectively. Here x1 =
1/(1 + 2) = 1/3. The total vapor pressure can now be calculated
as:

P = P ∗

2
+(P ∗

1
− P ∗

2
) x1 = (18.5 kPa)+((51.3 kPa) − (18.5 kPa))×

1

3

= 29.4 kPa

The liquid will boil when the external pressure is reduced below
29.4 kPa.
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(b) We use the following equation from the lecture notes:

y1 =
x1P

∗

1

P ∗

2
+ (P − P ∗

1
− P ∗

2
) x1

where x1 is the mole fraction of component 1 in the liquid and y1

in the gas phase. The first drop will have the same composition
as the gas. Inserting the numbers, we get:

y1 =
(1/3)(51.3 kPa)

(18.5 kPa) + (32.8 kPa)(1/3)
= 0.581

6. Calculate the solubility of naphthalene at 25 ◦C in any solvent in which
it forms an ideal solution. The melting point of naphthalene is 80 ◦C,
and the enthalpy of fusion is 19.29 kJ mol−1. The measured solubility
of naphthalene in benzene is x1 = 0.296. Assume that this forms an
ideal solution.
Solution:

Use the following equation from the lecture notes:

x1 = exp

[

−
∆fusH

◦

A

R

(
1

T
−

1

Tfus,A

)]

= exp

[

−
19190 J mol−1

8.314 J K−1 mol−1

(
1

298 K
−

1

353 K

)]

= 0.3

7. The addition of a nonvolatile solute to a solvent increases the boiling
point above that of the pure solvent. What is the elevation of the
boiling point when 0.1 mol of nonvolatile solute is added to 1 kg of
water? The enthalpy of vaporization of water at the boiling point is
40.6 kJ mol−1. Assume that this forms an ideal solution.
Solution:

The following formula was given in the lecture notes:

∆Tb =
RT 2

vap,A

∆vapH◦

A

xB = KbmB where Kb =
RT 2

vap,AMA

∆vapH◦

A
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First we calculate Kb:

Kb =
(8.314J K−1 mol−1)(373.1 K)2(0.018 kg mol−1)

40600 J mol−1
= 0.513 K kg mol−1

Then:

∆Tb = KbmB =
(
0.513 K kg mol−1

)
(

0.1 mol

1 kg

)

= 0.0513 K

8. For a solution of water (component 1) and ethanol (component 2) at
20 ◦C that has 0.2 mole fraction of ethanol, the partial molar volume
of water is 17.9 cm3mol−1 and the partial molar volume of ethanol is
55.0 cm3mol−1. What volumes of pure ethanol and water are required
to make exactly 1 L of this solution? At 20 ◦C the density of ethanol is
0.789 g cm−3 and the density of water is 0.998 g cm−3. The molecular
weights of water and ethanol are 18.016 and 46.07 g mol−1, respectively.
Solution:

The total volume of the mixture is given by: V = n1V̄1 + n2V̄2. Since
we have 0.2 mole fraction of ethanol, we must have 0.8 mole fraction
of water. Thus n1 = (0.8/0.2) × n2 and the total volume is then V =
n2

(
4V̄1 + V̄2

)
. The molar volumes were given: V̄1 = 17.9 cm3 mol−1

and V̄2 = 55.0 cm3 mol−1. The total volume sought is 1000 cm3 (= 1
L). Solving for n2 (the amount of ethanol) gives:

n2 =
V

4V̄1 + V̄2

=
1000 cm3

4
(
17.9 cm3 mol−1

)
+

(
55.0 cm3 mol−1

) = 7.90 mol

The amount of water is given by: n1 = 4 × n2 = 31.6 mol. Next we
convert moles to grams and finally to volume (cm3):

m1 = n1M1 = (31.6 mol) × (18.0 g/mol) = 569 g

m2 = n2M2 = (7.90 mol) × (46.1 g/mol) = 364 g

Conversion to volume by using the given liquid densities:

V1 =
569 g

0.998 g cm−3
= 570 cm3
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V2 =
364 g

0.789 g cm−3
= 461 cm3

Note that adding these volumes directly does not yield 1000 cm3. Upon
mixing the solution shrinks by 31 cm4 (at 20 ◦C).

9. Calculate ∆rG
◦ for H2O(g, 25 ◦C) = H2O(l, 25 ◦C). The equilibrium

vapor pressure of water at 25 ◦C is 3.168 kPa.
Solution:

Activity of pure liquid is one and hence the equilibrium constant K =
1/(P/P ◦) = 31.57. This gives ∆rG

◦ directly:

∆rG
◦ = −RT ln(K) = −

(
8.3145 J K−1 mol−1

)
× (298 K) × ln (31.57)

= −8.56 kJ mol−1
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