Thermodynamics: Examples for chapter 9.

1. N-bromoacetanilide (A) reacts to 4-bromoacetanilide (B) in dichloromethane

at 15 ° according to the following kinetics:

¢ (hr) 0 40 105 230 315 450 48.0
102 x [A] (M) 1.00 0.907 0.762 0.566 0.466 0.348 0.321

Determine the first-rder rate constat, &k, and the half-life ¢, 5.

Solution:

Approximately halfway between 23.0 hr and 31.5 hr [A] ~ 0.5. Thus
the half-life is 27.3 hr or about 10° s. More accurate results could be
obtained by fitting the integrated form of the 1st order rate equation
to the kinetic data. The relation between ¢/, and k; is:
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2. The oxidation of Fe(CN)§~ to Fe(CN)2™ by perxodisulfide, 027, can
be monitored spectrophotometrically by observing the increase in ab-
sorbance at 420 nm, A0 um:

2Fe (CN)2™ + S,02~ 2 2Fe (CN)2™ 4 2507~
with the differential rate-law:
1d [Fe(CN)g ]

S R (o] [5:08)

Under the pseudo-first-order conditions with [S;05°] = 1.8 x 107> M
and [Fe (CN)é_} = 6.5 x 107* M., the following absorbances were
recorded at 25 °C:

t (s) 0 900 1800 2700 3600 4500 oo

Ag20nm  0.120 0.290 0.420 0.510 0.581 0.632 0.781

Calculate the pseudo-first-order rate constant, ky = ko [SQO?], and
then the second-order rate constant ko.

Solution:



According to the Lambert-Beer law, Ao nm X [Fe (CN)z_}. The rate
of Fe(CN);~ disappearance and Fe(CN)g~ appearance have the same
magnitude but opposite sign:

_1d[Fe(CN)g ] _ 1d[Fe(CN)g ]

2 dt 2 dt
and also [Fe (CN)gf] = [Fe (CN)gf]o — [Fe (CN)gf}.
The above two relations can be combined as:

1d [Fe (CN);™]
2 dt

= ky ([Fe (CN)g ], — [Fe (CN);]) x [S2037]

Since perxodisulfide is in excess, its concentration is approximately
constant and we can treat the system as pseudo-first-order reaction:

1d [Fe (CN); ]

: — = k1 ([Fe (CN)g ], — [Fe (CN)g7])

The solution to this differential equation is:

[Fe(ON)3] = [Fe (ON)3 ], x (1— 72)

Since A490 420nm X [Fe (CN)g_}, we proceed in fitting:
Ao nm = C X (1 - 67%”)

Before fitting the data, one should notice that there is a baseline ab-
sorption at 420 nm since A # 0 at ¢t = 0 (see the table of experimental
data given). So first subtract 0.120 off from all the given values. Least
squares fit to the above equation then yields k; = 1.7 x 107 s~ and

4 1 4 _
further ky = [Sglgg_] = igiigﬂs]\/{ =94x10*st ML,

. First-order rate constants, k, for the rotation about the C—N bond
in N,N-dimethylnicotinamide measured at different temperatures by
NMR are:

T (K) 10.0 157 21.5 27.5 33.2 385 457

k(s7') 2.08 457 824 158 284 46.1 935

2



Determine the Arrhenius activation energy F, and the pre-exponential
factor A.

Solution:

Enter the data into qtiplot and fit the Arrhenius law to it, k = Ae~Fa/(RT),
Remember to use K units for temperature. Least squares fitting gives
A=6.8x%x10" and £, = 78.5 kJ/mol.

. Derive the expression for the product (P) concentration in the following
reaction:

k
A+Bk§1ﬁ>P

by using the approximation k- >> k.

In the lecture notes it was shown that: % = k' [A] [B] where k' = kkL_

This is effectively a second-order rate equation, which can be written
in integrated form as:

1y 1 n
= ()
where [A] = [A], — z, [B] = [B], — #, and [P] = x.
This can be solved for x (which is equal to [P]):

[B], — [B], """ (1Blo=[Ao)

P] = = ,
1_ %g t([Blo—[Alp)

. Carry out the same calculation as in the above problem but by using
the steady-state approximation.

The kinetic equations can be written as:
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This is the same form as in the previous problem. The result would be

the same with the exception of the value of k' = kk_Lik

. Show that the results of the previous problems can be used to derive
the Michaelis-Menten enzyme kinetics model:

k
E+S§E&ﬂP+E

(E = enzyme, S = substrate, and P = product) with % = k' [E],,
K = k[S]/(Ky +[S]) and Ky = (k- + ky)/ks. Note that the sub-
strate is in excess compared to the enzyme and the concentration of
the enzyme is conserved in the reaction.

Solution:

The previous problem gives directly:

ki [E][S]
ES] = ————
[ES] ko +k
Since the enzyme concentration is conserved, we have [E]+[ES] = [E],.

Furthermore S is not greatly affected due to its high concentration and
then [S] ~ constant. This gives:

ke ([E]y — [ES]) [S]
ko +k

[ES] =



ky [E] (8]

= [ES] =

k- +k+ ki [S]
Inserting this into % = k [ES] yields:
P kk, [E
u: -‘r[ ]O[S] :k/[E]
dt k- +k+ky[9]
where £/ = kﬁ[ﬂs] and kyr = % (Michaelis constant).




