
Thermodynamics: Examples for chapter 9.

1. N-bromoacetanilide (A) reacts to 4-bromoacetanilide (B) in dichloromethane
at 15 ◦ according to the following kinetics:

t (hr) 0 4.0 10.5 23.0 31.5 45.0 48.0
102 × [A] (M) 1.00 0.907 0.762 0.566 0.466 0.348 0.321

Determine the first-rder rate constat, k1, and the half-life t1/2.

Solution:

Approximately halfway between 23.0 hr and 31.5 hr [A] ≈ 0.5. Thus
the half-life is 27.3 hr or about 105 s. More accurate results could be
obtained by fitting the integrated form of the 1st order rate equation
to the kinetic data. The relation between t1/2 and k1 is:

k1 =
ln(2)

t1/2

=
ln(2)

105 s
≈ 7 × 10−6 s−1

2. The oxidation of Fe(CN)4−
6 to Fe(CN)3−

6 by perxodisulfide, S2O
2−
8 , can

be monitored spectrophotometrically by observing the increase in ab-
sorbance at 420 nm, A420 nm:

2Fe (CN)4−
6 + S2O

2−
8

k2
→ 2Fe (CN)3−

6 + 2SO2−
4

with the differential rate-law:

−
1

2

d
[

Fe (CN)4−
6

]

dt
= k2

[

Fe (CN)4−
6

] [

S2O
2−
8

]

Under the pseudo-first-order conditions with
[

S2O
−2
8

]

= 1.8 × 10−2 M

and
[

Fe (CN)4−
6

]

= 6.5 × 10−4 M., the following absorbances were
recorded at 25 ◦C:

t (s) 0 900 1800 2700 3600 4500 ∞

A420 nm 0.120 0.290 0.420 0.510 0.581 0.632 0.781

Calculate the pseudo-first-order rate constant, k1 = k2

[

S2O
2−
8

]

, and
then the second-order rate constant k2.

Solution:
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According to the Lambert-Beer law, A420 nm ∝
[

Fe (CN)3−
6

]

. The rate
of Fe(CN)3−

6 disappearance and Fe(CN)4−
6 appearance have the same

magnitude but opposite sign:

−
1

2

d
[

Fe (CN)4−
6

]

dt
=

1

2

d
[

Fe (CN)3−
6

]

dt

and also
[

Fe (CN)3−
6

]

=
[

Fe (CN)4−
6

]

0
−

[

Fe (CN)4−
6

]

.

The above two relations can be combined as:

1

2

d
[

Fe (CN)3−
6

]

dt
= k2

([

Fe (CN)4−
6

]

0
−

[

Fe (CN)3−
6

])

×
[

S2O
2−
8

]

Since perxodisulfide is in excess, its concentration is approximately
constant and we can treat the system as pseudo-first-order reaction:

1

2

d
[

Fe (CN)3−
6

]

dt
= k1

([

Fe (CN)4−
6

]

0
−

[

Fe (CN)3−
6

])

The solution to this differential equation is:

[

Fe (CN)3−
6

]

=
[

Fe (CN)4−
6

]

0
×

(

1 − e−2k1t
)

Since A420 420nm ∝
[

Fe (CN)3−
6

]

, we proceed in fitting:

A420 nm = C ×
(

1 − e−2k1t
)

Before fitting the data, one should notice that there is a baseline ab-
sorption at 420 nm since A 6= 0 at t = 0 (see the table of experimental
data given). So first subtract 0.120 off from all the given values. Least
squares fit to the above equation then yields k1 = 1.7 × 10−4 s−1 and
further k2 = k1

[S2O2−

8 ]
= 1.7×104 s−1

1.8×10−2 M
= 9.4 × 10−4 s−1 M−1.

3. First-order rate constants, k, for the rotation about the C–N bond
in N,N-dimethylnicotinamide measured at different temperatures by
NMR are:

T (K) 10.0 15.7 21.5 27.5 33.2 38.5 45.7
k (s−1) 2.08 4.57 8.24 15.8 28.4 46.1 93.5
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Determine the Arrhenius activation energy Ea and the pre-exponential
factor A.

Solution:

Enter the data into qtiplot and fit the Arrhenius law to it, k = Ae−Ea/(RT ).
Remember to use K units for temperature. Least squares fitting gives
A = 6.8 × 1014 and Ea = 78.5 kJ/mol.

4. Derive the expression for the product (P) concentration in the following
reaction:

A + B
k+

⇀↽
k−

I
k
→P

by using the approximation k− >> k.

Solution:

In the lecture notes it was shown that: d[P]
dt

= k′ [A] [B] where k′ = k+k
k−

.
This is effectively a second-order rate equation, which can be written
in integrated form as:

k′t =
1

[B]0 − [A]0
ln

(

[A]0 ([B]0 − x)

([A]0 − x) [B]0

)

where [A] = [A]0 − x, [B] = [B]0 − x, and [P] = x.

This can be solved for x (which is equal to [P]):

[P] = x =
[B]0 − [B]0 ek′t([B]

0
−[A]

0)

1 −
[B]

0

[A]
0

ek′t([B]
0
−[A]

0)

5. Carry out the same calculation as in the above problem but by using
the steady-state approximation.

Solution:

The kinetic equations can be written as:
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d [P]

dt
= k [I]

d [I]

dt
= k+ [A] [B] − k− [I] − k [I] ≈ 0

⇒ [I] ≈
k+ [A] [B]

k−k

⇒
d [P]

dt
= k [I] =

kk+

k− + k
[A] [B]

This is the same form as in the previous problem. The result would be
the same with the exception of the value of k′ = kk+

k−+k
.

6. Show that the results of the previous problems can be used to derive
the Michaelis-Menten enzyme kinetics model:

E + S
k+

⇀↽
k−

ES
k
→P + E

(E = enzyme, S = substrate, and P = product) with d[P]
dt

= k′ [E]0,
k′ = k [S] /(KM + [S]) and KM = (k− + k+)/k+. Note that the sub-
strate is in excess compared to the enzyme and the concentration of
the enzyme is conserved in the reaction.

Solution:

The previous problem gives directly:

[ES] =
k+ [E] [S]

k− + k

Since the enzyme concentration is conserved, we have [E]+[ES] = [E]0.
Furthermore S is not greatly affected due to its high concentration and
then [S] ≈ constant. This gives:

[ES] =
k+ ([E]0 − [ES]) [S]

k− + k
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⇒ [ES] =
k+ [E]0 [S]

k− + k + k+ [S]

Inserting this into d[P]
dt

= k [ES] yields:

[P]

dt
=

kk+ [E]0 [S]

k− + k + k+ [S]
= k′ [E]

where k′ = k[S]
kM+[S]

and kM = k−+k
k+

(Michaelis constant).
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