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Chapter 1: Zeroth law of thermodynamics and
equation of state

“Classical thermodynamics is a statistical model. It has no knowledge of
individual atoms and molecules. It uses only macroscopic variables such as

temperature, pressure and volume for describing the system.”



Brief history of classical thermodynamics

Sadi Carnot, French mathematician and engineer
(1796 – 1832): “Reflections on the Motive Power of
Fire” (1824). Problems were mainly related to devel-
oping efficient steam engines.

William Rankine, Scottish engineer and physicist
(1820 – 1872): “Mechanical action of heat” (1850).
His work was also concentrated on steam engines.

Rudolf Clausius, German physicist and mathematician
(1822 – 1888): “The total energy of the universe is
constant; the total entropy is continually increasing”.
He formulated the 2nd law of thermodynamics and the
concept of entropy.

William Thomson, Irish-Scottish physicist and mathe-
matician (“Lord Kelvin”; 1824 – 1907): Absolute tem-
perature scale (1848). One of the most important con-
tributors to the 19th century physical sciences.



4
1.1 State of a system

Examples:

System: single molecule, solid, gas, liquid, etc.

Surroundings: solvent, container, gas cylinder, etc.

Boundary: Interaction between the system and the
surroundings (forces between atoms and molecules) or
vacuum (no interaction).

“Focus on the system and treat the surroundings approximately”

Terminology:

Non-isolated system Interaction with the surroundings.
Isolated system No interaction with the surrounding.
Open system Exchange of matter/energy with the surroundings.
Closed system No exchange of matter/energy.
Adiabatic system No exchange of heat with the surroundings.
Heterogeneous system Multiple phases in the system.
Homogeneous system Single phase system.
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Phase Solid, liquid or gas (heterogeneous, e.g. water with ice).
Thermodynamic variables Variables that specify the state of the system.

(for example P , T , V ) (or state variables).
Extensive variable Variable depends on the size of the system.
Intensive variable Variable does not depend on the size of the system.
Intensive state System variables that are intensive.
Extensive state System variables that are extensive.
Equilibrium System does not change as a function of time.

The most common variables are P (Pressure), V (Volume), n (amount of substance)
and T (Temperature). When n is fixed, two variables need to be specified for a single
phase system. Why is thermodynamic description needed?

Microscopic definition of a system requires typically large number of variables. One
mole of gas molecules would mean more than 6×1023 variables!
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Molar volume is defined as the ratio between volume V (m3 or dm3 = L) and the
number of particles in it n (mol):

V̄ =
V

n
(1.1)

The amont of substance n (mol) is given by:

n =
N

NA
=

N

6.022× 1023 mol−1
= “moles of substance” (1.2)

where N is the number of molecules.

Use SI-units in all calculations. Convert to other units at the final stage.

At equilibrium a system is described by its thermodynamic variables. Thermody-
namic equation of state introduces dependencies between the variables. An example
of thermodynamic equation of state is the ideal gas law (PV = nRT ), which allows
to express any of the five variables as a function of the remaining ones.
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1.2 The zeroth law of thermodynamics

Thermal equilibrium between two systems means that they have been in thermal
contact for sufficiently long time so that they have the same temperature. The
following transitivity rule is called the zeroth law of thermodynamics:

According to our every day knowledge of thermal objects, this law appears quite
natural. Formally, it is needed for defining the temperature scale. The zeroth law
of thermodynamics does not have any “direct” applications but it is needed for
making thermodynamics a complete theory.
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Given that n is fixed and P is small, experimental results have established the
Boyle’s law:

PV ≈ constant (1.3)

Furthermore experiments have shown that under the same conditions (Charles &
Gay-Lussac), PV is proportional to temperature:

PV ∝ T (1.4)

To formally define a temperature scale, we use the guidance provided by these
experimental observations. For a system in two different states (P1, V1 and P2, V2),
their relative temperatures are defined as:

P1V1

P2V2
=

T1

T2
(1.5)

Note that this definition of temperature (“ideal gas temperature”) is valid only in
the limit of zero pressure. These results also suggests the ideal gas law:

PV = nRT (1.6)

where proportionality constants n and R correspond to the amount of gas (mol)
and the molar gas constant (8.31451 J / (mol K)), respectively.
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1.3 The ideal gas temperature scale

Following the ideas of the previous section, we define the ideal gas temperature:

T = lim
P→0

P V̄

R
= lim

P→0

PV

nR
(1.7)

The unit of thermodynamical temperature is Kelvin (1 / 273.16 of the temperature
of the triple point of water). Conversion between different temperature units:

t = T − 273.15 (Celsius degrees (t) and Kelvin degrees (T )) (1.8)

t =
9

5
(T − 273.15) + 32 (Farenheit degrees (t) and Kelvin degrees (T )) (1.9)

Also note that the SI unit of pressure P is pascal (Pa; N / m2). The atmospheric
pressure is 101,325 Pa. Other units of pressure are atmospheres (atm) and bar.
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Overview of basic SI units

SI units are an international standard (MKS; 1960).

Quantity Unit Symbol Definition

length meter m Fixed to speed of light.
mass kilogram kg Weight of a reference cylinder.
time second s Fixed to Cs radiative lifetime.
current ampere A Fixed to current in reference system
temperature kelvin K 0 K = absolute zero, 273.16 K = triple

point of H2O.
luminous intensity candela cd Fixed to a black-body reference.
amount of substance mole mol The number of 12C atoms in 0.012 kg.

Avogadro’s constant gives the number of
molecules in one mole;
NA = 6.022137 × 1023 mol−1.
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Quantity Unit Symbol Definition
force newton N 1 N = 1 kg m s−2

energy joule J 1 J = 1 kg m2 s−2

electric charge coulomb C 1 C = 1 As
pressure pascal Pa 1 Pa = 1 N m−2

magnetic field tesla T 1 T = 1 kg s−2 A−1

frequency hertz Hz 1 Hz = 1 s−1

power watt W 1 W = 1 J s−1

voltage volt V 1 V = 1 W A−1

resistance ohm Ω 1 Ω = V A−1

Non-SI unit SI unit Conversion factor
ångström (Å) meter (m) 1 Å= 10−10 m
inch (in) meter (m) 1 in = 2.54 cm = 0.0254 m
foot (ft) meter (m) 1 ft = 12 in = 0.3048 m
mile (mi) meter (m) 1 mi = 5280 ft = 1609.344 m
AMU kilogram (kg) 1 AMU = 1.66054 × 10−27kg
eV joule (J) 1 eV = 1.602177 × 10−19 J
cal joule (J) 1 cal = 4.1868 J
torr (Hgmm) pascal (Pa) 1 torr = 1.33322 × 102 Pa
atmospheres (atm) pascal (Pa) 1 atm = 1.01325 × 105 Pa
bar pascal (Pa) 1 bar = 105 Pa
psi pascal (Pa) 1 psi = 6.8948 × 103 Pa
gauss (G) tesla (T) 1 G = 10−4 T
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Common conversion factors. In Kelvin units, the energy corresponds to kT .
Note also that 1 K = 3.1669 × 10−6 Hartree (atomic units; a. u.) or 1 eV = 27.2114
Hartree. To get J mol−1 or kcal mol−1, multiply by Avogadro’s number NA. For
example, 1 eV = 1.602177×10−19 J and 1 atm = 760 torr.

Mass – Energy

kg u J eV

1 6.022137 × 1026 8.987552 × 1016 5.609586 × 1035

1.660540 × 10−27 1 1.492419 × 10−10 9.314943 × 108

1.112650 × 10−17 6.700531 × 109 1 6.241506 × 1018

1.782663 × 10−36 1.073544 × 10−9 1.602177 × 10−19 1

Spectroscopic units

Hz cm−1 Ry eV

1 3.335641 × 10−11 3.039660 × 10−16 4.135669 × 10−15

2.99792458 × 1010 1 9.112671 × 10−6 1.239842 × 10−4

3.289842 × 1015 1.097373 × 105 1 1.360570 × 101

2.417988 × 1014 8.065541 × 103 7.349862 × 10−2 1
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Energy

K kWh kcal J eV

1 3.83516 × 10−30 3.298 × 10−27 1.38066 × 10−23 8.61739 × 10−5

2.60745 × 1029 1 8.598 × 102 3.60000 × 106 2.24694 × 1025

3.0325 × 1026 1.1630 × 10−3 1 4.1868 × 103 2.6132 × 1022

7.24292 × 1022 2.77778 × 10−7 2.388 × 10−4 1 6.241506 × 1018

1.16045 × 104 4.45049 × 10−26 3.827 × 10−23 1.602177 × 10−19 1

Pressure

Pa bar kp / cm2 torr (mmHg) atm

1 10−5 1.020 × 10−5 7.5006 × 10−3 9.869 × 10−6

105 1 1.020 7.5006 × 102 9.869 × 10−1

9.807 × 104 9.807 × 10−1 1 7.3556 × 102 9.678 × 10−1

1.333 × 102 1.333 × 10−3 1.360 × 10−3 1 1.316 × 10−3

1.013 × 105 1.013 1.033 760 1
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1.4 Ideal mixtures and Dalton’s law

Eq. (1.6) applies also to mixtures of ideal gases:

P = (n1 + n2 + ...)
RT

V
= n1

RT

V
+ ... = P1 + P2 + ... =

∑

i

Pi (1.10)

where ni is the amount of species i (mol), n = n1 + n2 + ... is the total amount of
gas (mol). and pressures Pi are partial pressures for species i (Pa). Thus the total
pressure P is a sum of all partial pressures (Dalton’s law). Each species obeys the
ideal gas law also separately.

Partial pressure Pi can also be expressed using mole fractions (yi). When RT/V is
replaced by P/n in Eq. (1.10), we get:

Pi =
ni

n
P = yiP (1.11)

Example. The mass percentage composition of dry air at sea level is approximately
N2:75.5, O2:23.2 and Ar:1.3. What is the partial pressure of each component when
the total pressure is one atmosphere (1.00 atm)?

Solution. First calculate the molar mass for each species:

m(N2) = 2× 14.01 AMU×
(

1.661× 10−24 g

AMU

)

×NA = 28.02
g

mol

m(O2) = 2× 16.00 AMU×
(

1.661× 10−24 g

AMU

)

×NA = 32.00
g

mol
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m(Ar) = 39.95 AMU×
(

1.661× 10−24 g

AMU

)

×NA = 39.95
g

mol

Since the partial pressure does not depend on the amount of air, we can choose
the amount of air to be 1.00 g. The number of molecules in the air sample can be
calculated:

n(N2) =
(1.00 g)× 0.755

28.02 g mol−1
= 0.0269 mol

n(O2) =
(1.00 g)× 0.232

32.00 g mol−1
= 0.00725 mol

n(Ar) =
(1.00 g)× 0.013

39.95 g mol−1
= 0.00033 mol

The total amount of gas (sum of the above components) is 0.0345 mol. The mole
fractions and partial pressures are then:

N2 O2 Ar
Mole fraction 0.780 0.210 0.0096
Partial pressure (atm) 0.780 0.210 0.0096

Note: The numerical values of the AMU to g conversion and NA cancel in the
calculation of m’s.
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1.5 Real gases and the virial equation

Real gases behave like ideal gases only in the limit of zero pressure and high tem-
perature.

Compressibility factor Z indicates deviation from the ideal gas law:

Z =
P V̄

RT
=

PV

nRT
(1.12)
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In the limit of high temperature, thermal energy dominates over the potential. At
low temperatures the effect of the attractive part of the potential can be seen more
clearly because thermal energy is not sufficient to smooth out the binding.

Note: The compressibility vs. pressure curves depend on the gas as well as the
temperature.
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A number of different equations of state for real gases have been proposed:

Ideal gas: P =
RT

V̄
(1.13)

van der Waals (vdW): P =
RT

V̄ − b
− a

V̄ 2
(1.14)

Berthelot: P =
RT

V̄ − b
− a

T V̄ 2
(1.15)

Virial (Onnes): P =
RT

V̄

{

1 +
B(T )

V̄
+

C(T )

V̄ 2
+ ...

}

(1.16)

Alternative forms of Eq. (1.16):

Z =
P V̄

RT
= 1 +

B(T )

V̄
+

C(T )

V̄ 2
+ ... = 1 +B′(T )P + C′(T )P 2 + ... (1.17)

Kamerlingh Onnes, Dutch

physicist (1853 – 1936),

Virial equation (1901),

Liquid helium (1908),

Nobel prize (1913).

where the relationship between the two constants are
given by:

B′(T ) =
B(T )

RT
and C′(T ) =

C(T )−B(T )2

(RT )2
(1.18)

Note: Temperature where B(T ) = 0 is called the Boyle
temperature. At this temperature the gas behaves ide-
ally over an extended range in pressure.

The above equations of state can be derived using sta-
tistical mehanics and assuming a certain type of pair
interaction.



20

Example. Estimate the molar volume of CO2 at 500 K and 100 atm by treating
it as a van der Waals gas. For CO2 the coefficients are: a = 3.640 atm L2 mol−2

and b = 4.267× 10−2 L mol−1.

Solution. First rearrange the van der Waals equation (Eq. (1.14)):

V̄ 3 −
(

b+
RT

P

)

V̄ 2 +
( a

P

)

V̄ − ab

P
= 0

Roots of a cubic equation (molar volume is the unknown variable) can be found
either analytically by using the appropriate formulas (by using the Maxima program
described in the Appendix). Next, we setup numerical values for the coefficients:

b+RT/P = 0.453 L mol−1

a/P = 3.64× 10−2 (L mol−1)2

ab/P = 1.55× 10−3 (L mol−1)3

Thus the equation is:

V̄ 3 − 0.453V̄ 2 +
(
3.64× 10−2

)
V̄ −

(
1.55× 10−3

)
= 0

The only real valued root is: V̄ = 0.370 L mol−1 (0.410 L mol−1 for ideal gas).
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When the equation of state is given, it defines a surface in three dimensional space.
The surface is such that it satisfies the equation state. This is difficult to visualize
in 3-D and therefore 2-D projections are preferred (i.e., one variable is kept con-
stant when plotting). An example is shown below where the temperature was held
constant.

0 0.2 0.4 0.6 0.8 1

Molar volume (m
3
)

2.0×10
4

4.0×10
4

P
re

ss
u

re
 (

P
a)

This example corresponds to an ideal gas at 298.15 K temperature. Such plots for
other equations of state are shown in the following sections.
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1.6 Critical phenomena

Definitions:
Pc = Critical pressure (the highest pressure where liquid can boil)
Tc = Critical temperature (the highest temperature where gas can condense)
Vc = Critical volume (molar volume at the critical point)
Isotherm = P V̄ curve that is obtained when temperature is held constant

Formally Pc, Tc and Vc define a region on the P -V -T surface where liquid and gas
phase can coexist as two separate phases. Outside this region the phases cannot be
separated.

Isotherms (Eq. (1.14) for CO2).

Unphysical “loops” removed.
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Note: The ends of tie lines indicate pure liquid (VL) and pure gas phase (VG) limits.
When the tie line vanishes, VG and VL become identical and the phases cannot be
distinguished from each other. Remember to stay on the isotherms when reading
the above figures - states outside the isotherms are forbidden by the equation of
state. In the last figure, the minima below the critical point have been replaced
with a horizontal tie line.

Gas/liquid becomes supercritical above its critical point. In practice, a supercritical
fluid has properties both of dense gas and low viscosity liquid. It can diffuse through
materials like gas but it can dissolve materials like a liquid. Supercritical fluids are
often used as substitutes for organic solvents (supercritical fluid extraction).

At the critical temperature the following conditions hold (inflection point):
(
∂P

∂V

)

T=Tc

= 0 (1.19)

(
∂2P

∂V 2

)

T=Tc

= 0 (1.20)

Isothermal compressibility is defined as (infinity at critical point):

κ = − 1

V̄
×
(
∂V̄

∂P

)

T

(1.21)

Terminology: isothermal = Temperature does not change in the process.
adiabatic = No heat transfer in the process.
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In addition to critical temperature, critical pressure (Pc) and critical volume (Vc)
can also be defined by exchanging the roles of variables in Eqs. (1.19) and (1.20).
Expressions for these quantities can be derived for various equations of state. For
the van der Waals equation of state, we have:

Pc =
a

27b2
(1.22)

V̄c = 3b

Tc =
8a

27bR

Exercise. Verify that the above expressions are correct. Use the van der Waals
equation of state and Eqs. (1.19) and (1.20). Show that the following results hold
for the Berthelot equation of state:

Pc =
1

6

(
aR

6b3

)1/2

(1.23)

V̄c = 3b

Tc =
2

3

(
2a

3bR

)1/2
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1.7 The van der Waals equation

Recall the van der Waals equation (Eq. (1.14)):
(

P +
a

V̄ 2

)

︸ ︷︷ ︸

Peff

(
V̄ − b

)

︸ ︷︷ ︸

V̄eff

= RT (1.24)
Johannes Diedrik van der

Waals, Dutch physicist

(1837 – 1923), Nobel prize

(1910).

This is similar to the ideal gas law but it uses effective pressure and volume. Re-
duction in the molar volume is needed because molecules have finite size (i.e. they
are not point-like as assumed in the ideal gas law). This part is related to the re-
pulsive wall of the molecule - molecule interaction. The effective pressure includes
a correction that arises from attractive interactions between molecules (i.e. higher
compressibility). Constants a and b depend on the gas. If monoatomic gas tem-
perature is sufficiently high compared to its atom-atom binding energy, it can be
shown that the parameters a and b are directly related to the atom – atom pair
interaction U12(r) by (see Landau and Lifshitz, Statistical Physics Pt. 1):

a = π

∞∫

2r0

|U12(r)| r2dr (1.25)

b =
16

3
πr30

where parameter 2r0 denotes the point where U12(r) becomes repulsive (i.e. it
becomes positive when the interaction at infinity is taken to be zero).
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The compressibility factor Z for a van der Waals gas is given by:

Z =
P V̄

RT
=

V̄

V̄ − b
− a

RT V̄
=

1

1− b/V̄
− a

RT V̄
(1.26)

Taylor series. Function f that has derivatives of all orders can be expanded in
Taylor series: f(x) = a0 + a1(x − h) + a2(x − h)2 + a3(x − h)3 + ... where the
coefficients are given by:

a0 = f(h) and an =
1

n!

(
dnf(x)

dxn

)∣
∣
∣
∣
x=h

(1.27)

and we say that the function was expanded about point h. When h = 0, the series
expansion in called Maclaurin series.

Example. Find the Taylor series for ln(x), expanded about x = 1 (i.e. h = 1
above).

Solution. The first derivative of ln(x) is 1/x, which equals 1 at x = 1. The second
derivative is −1/x2, which equals −1 at x = 1. The derivatives follow a regular
pattern:

(
dnf

dxn

)

= (−1)n−1(n− 1)!



27

so that we finally have: ln(x) = (x− 1)− 1
2
(x− 1)2 + 1

3
(x− 1)3 − 1

4
(x− 1)4 + ...

When b/V̄ is small, we can use the Maclaurin series to expand:

1

1− b/V̄
= 1 +

b

V̄
+

(
b

V̄

)2

+

(
b

V̄

)3

+ ... (1.28)

Thus we can write the compressibility factor Z in Eq. (1.26) as (cf. Eq. (1.17)):

Z = 1 +
(

b− a

RT

)

︸ ︷︷ ︸

=B in Eq. (1.17)

1

V̄
+

(
b

V̄

)2

+ ... (1.29)

Note that when T is small, 1/T is large and therefore a is important at low tem-
peratures and b at high temperatures. The Boyle temperature can now be obtained
from B(T ) = 0 as:

TB =
a

bR
(1.30)
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The following realtions can be used to relate a, b and Pc, Tc, V̄c to each other:

a =
27R2T 2

c

64Pc
=

9

8
RTcV̄c ⇒ Tc =

8a

9RV̄c
=

8a

27Rb
and Pc =

RTc

8b
=

a

27b2
(1.31)

b =
RTc

8Pc
=

V̄c

3
⇒ V̄c = 3b (1.32)

Example. The experimentally determined critical constants for ethane are Pc =
48.077 atm and Tc = 305.34 K. Calculate the van der Waals parameters of the gas.

Solution. First convert everything to SI units:

Pc = 48.077× (1.013× 105) Pa = 4.870× 106 Pa
V̄c = 0.1480 dm3 mol−1 = 14.80× 10−5 m3 mol−1

Tc = 305.34 K

Eqs. (1.31) and (1.32) allow to express a and b in terms of three different pairs
(Pc, V̄c), (Tc, V̄c) and (Pc, Tc). The (Pc, Tc) pair is given here and hence the follow-
ing form of equations should be used to get a and b:

a =
27 (RTc)

2

64Pc
and b =

RTc

8Pc
(1.33)
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a =
27 (RTc)

2

64Pc
=

27




8.3145

Nm
︷︸︸︷

J mol−1 K−1 × 305.34 K






2

64




4.870× 106 Pa

︸︷︷︸

Nm−2






= 0.5583
Nm4

mol2

= 0.5583

(
N
m2

)

m6

mol2
= 0.5583

Pa m6

mol2
= 0.5583

(
9.869× 10−6 atm

)
(10 dm)6

mol2

= 5.510 dm6 atm mol−2

b =
RTc

8Pc
=

8.3145 J mol−1K−1 × 305.34 K

8× (4.870× 106 Pa)
= 6.652× 10−5 m3 mol−1

= 6.652× 10−5 × (10 dm)3 mol−1 = 0.06652 dm3 mol−1

Note: Once you get used to unit conversions, it may be easier to express the gas
constant in units of dm3 bar mol−1 K−1 (numerical value in these units is 0.083145).
Other units can be used as long as they are consistent (unit analysis is important!).
SI units are “automatically” compatible with each other.
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The van der Waals equation fails in the neighborhood of the critical point:
∣
∣V̄c − V̄

∣
∣ ∝ (Tc − T )1/2 (1.34)

However, experiments show that the exponent is close to 0.32 rather than 1/2.
Other properties that depend on (Tc − T ) show similar discrepancies as well.
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1.8 The principle of corresponding states

First we define reduced variables corresponding to P, T and V̄ as follows:

Pr =
P

Pc
, V̄r =

V̄

V̄c
, Tr =

T

Tc
(1.35)

By using these variables, it can be shown that the van der Waals equation becomes:

Pr =
8Tr

3V̄r − 1
− 3

V̄ 2
r

(1.36)

Note that the gas dependent constants
a and b disappeared from the equa-
tion. Thus within the van der Waals
equation of state, all gases (regadless
of their a and b values) should yield
identical curves. The compressibility
factor for van der Waals equation can
also be expressed in reduced units:

Z =
V̄r

V̄r − 1
3

− 9

8V̄rTr
(1.37)
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1.9 Description of the state of a system without
chemical reactions

Intensive variables:

System Degrees of freedom Example choice of variables
One-phase F = 2 (T, P ), (T, V ), (P, V )
Two-phase equilibrium F = 1 T or P
Three-phase equilibrium F = 0 none

Note: If multiple species (i.e., different gases) are included in one system then ad-
ditional degrees of freedom must be specified (increases by Ns − 1, where Ns is the
number of species; “the Gibbs phase rule”). Furthermore, a non-reactive system
was assumed.

Extensive variables: one extensive variable per phase (i.e., the amount of each
phase).

Example. Temperature of liquid 4He (T < 4 K) can be determined from the
helium vapor pressure in a closed container. Note that both liquid and gas phases
coexist and thus only one variable is needed to specify the state of the system (both
intensive variables). The experimentally observed phase diagram and the relation
between helium vapor pressure and temperature are shown below.
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Helium phase diagram.

0 1 2 3 4 5
Temperature (K)

0

200

400

600

800

1000

V
ap

o
r 

p
re

ss
u
re

 (
to

rr
)

The dashed line shows that 610 torr

vapor pressure corresponds to 4 K.

Example. For a non-reactive system with two species, two extensive variables are
required for a complete description (i.e., the amount of each species).

Recall terminology: “intensive state of system” = “described by intensive variables”
(i.e., they do not depend on the size of the system); “extensive state of system” =
“described by extensive variables” (i.e., they depend on the size of the system).

Note: The choice of variables is not unique, only the number of variables is fixed.
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1.10 Partial molar properties (gas mixtures)

A function is said to be homogenous of degree k if:

f(λx1, λx2, ..., λxN ) = λkf(x1, x2, ..., xN ) (1.38)

All extensive variables are homogeneous of degree k = 1:

V (λn1, λn2, ..., λnN ) = λ1V (n1, n2, ..., nN ) = λV (n1, n2, ..., nN ) (1.39)

where V is, for example, volume and ni’s are amounts of gases.

All intensive variables are homogeneous of degree zero (k = 0):

T (λn1, λn2, ..., λnN ) = λ0T (n1, n2, ..., nN ) = T (n1, n2, ..., nN ) (1.40)

Euler’s theorem. If function f is homogeneous of degree k then the following
holds:

kf(x1, x2, ..., xN ) =
N∑

i=1

xi

(
∂f(x1, x2, ..., xN )

∂xi

)

(1.41)

Proof. Function f is homogenous with degree k:

f(λx1, λx2, ..., λxN ) = λkf(x1, x2, ..., xN )
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Differentiate both sides with respect to λ and apply the chain rule:

N∑

i=1







∂f(λx1, λx2, ..., λxN )

∂(λxi)
× ∂(λxi)

∂λ
︸ ︷︷ ︸

=xi







= kλk−1f(x1, x2, ..., xN )

This holds for all values of λ and therefore we can choose λ = 1:

N∑

i=1

∂f(x1, x2, ..., xN )

∂xi
× xi = kf(x1, x2, ..., xN )

This completes the proof. If we apply this to volume V (k = 1), we have:

V =

(
∂V (n1, n2, ..., nN )

∂n1

)

T,P,{nj}j 6=1

× n1 + ... (1.42)

+

(
∂V (n1, n2, ..., nN )

∂nN

)

T,P,{nj}j 6=N

× nN = V̄1n1 + V̄2n2 + ...+ V̄NnN

where Vi are referred to as partial molar volumes (m3 / mol):

V̄i =

(
∂V

∂ni

)

T,P,{nj}j 6=i

(1.43)
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Partial molar volume tells us in practice how much the volume changes when a small
amount of gas component i is added to the gas mixture (P , T and the amounts of
other components remain constant). In terms of differentials:

dV = V̄idni (1.44)

where dni is an infinitesimal change in the amount of component i and dV is the
change in total volume occupied by the gas mixture. The total differential combining
all the components is:

dV = V̄1dn1 + V̄2dn2 + ...+ V̄ndnN (1.45)

The non-differential form is convenient to write in terms of mole fractions (yi):

V̄ = V̄1y1 + V̄2y2 + ...+ V̄NyN (1.46)

This result can be obtained by dividing both sides of Eq. (1.42) by n.

Example. Calculate the partial molar volume of a gas in an ideal gas mixture.

Solution. The volume of an ideal gas mixture is: V = RT
P

(n1 + n2 + ...+ nN ).
The partial molar volumes can be calculated by using Eq. (1.43):

V̄i =

(
∂V

∂ni

)

T,P,{nj}j 6=i

=
RT

P

All of the gases in the mixture have identical partial molar volumes. This is not
true for nonideal gases or liquids.
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1.11 Barometric formula

In the following we calculate the effect of additional pressure arising from gravita-
tion. This would be important, for example, if we consider a column of gas where
a difference in gravitational force exists:

F = −mg (1.47)

where m is the total mass of the gas and g is the standard gravitation constant
(9.80665 m s−2). To be exact, this constant depends on the position of measurement
on earth. It can be as high as 10.7 m s−2. In non-SI units the value of this constant
is 32.2 ft s−2.

The amount of gas within dh is:

dmgas = ρ×A× dh (1.48)

where ρ is the gas density (kg m−3) and A is the column
cross section. The force difference is given by:

dF = −dmgasg = −ρAgdh (1.49)

Dividing both sides with A yields the pressure difference:

dP =
dF

A
= −ρgdh (1.50)

Note the sign convention in force (− = down).
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For an ideal gas, we have an expression for the gas density ρ:

PV = nRT and ρ =
nM

V
⇒ ρ =

PM

RT
(1.51)

where M is the molar mass (kg mol−1). Thus we have:

dP = −PM

RT
gdh (1.52)

Separation of variables and integration from h = 0 (P0) to h (P ):

P∫

P0

dP

P
= −

h∫

0

gM

RT
dh (1.53)

ln

(
P

P0

)

= −gMh

RT
(1.54)

P = P0e
− gMh

RT (1.55)

This is known as the barometric formula.
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Pressures of O2 and N2 and the total pressure of atmosphere at various heights as
predicted by Eq. (1.55). It was assumed that the temperature does not depend on
height (which is not quite true).



Chapter 2: First law of thermodynamics

“A system can exchange energy with its environment in the form of work or heat.”
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2.1 Work and heat

Force (~F ) acting on a particle is a vector quantity as it has a direction and magni-
tude. Newton’s law of acceleration:

~F = m~a (2.56)

where ~F is the force (Newton, N), m the mass (kg) and ~a the acceleration (m s−2).

Work is a scalar quantity (in units of Joule):

w = ~F · ~L = FxLx + FyLy + FzLz =
∣
∣
∣~F
∣
∣
∣

∣
∣
∣~L
∣
∣
∣ cos(θ) (2.57)

where ~L is the vector defining the path (direction and length) along which the work
is being done. Subscripts refer to the Cartesian components of the corresponding
vectors.

Pressure P (Pa) is a scalar quantity:

P =
F⊥

A
(2.58)

where F⊥ denotes the force component (N) that is perpendicular to the surface with
area A (m2).

Example. What is the work done on/by a moving piston inside a cylinder?

Solution. We assume quasistatic system: P = Pext at all times. This corresponds
to slow movement of the piston.
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The system consists of the piston and the cylinder and sur-
roundings to outside of the cylinder. The work done on/by
the the system (piston) is:

w = −F⊥∆L = −P A∆L
︸ ︷︷ ︸

∆V

= −P∆V

where the piston moved by ∆L and ∆V is the change in the cylinder volume.
Note that ∆L and ∆V change sign depending on the process (i.e. compress or
expand). Note the sign convention: “+” means that the surroundings did work on
the system and “−” means that the system did work on the surroundings. The
previous expressions can also be written using differentials. For example in this
quasistatic case we have:

dw = −PextdV (= −PdV ) (2.59)

Example. What is the work done by a system slowly lifting an object weighting
1.00 kg by 0.100 m? The opposing force is the gravitational force.

Solution. The work is given by (note slow corresponds to a quasistatic system):

w = F × h = −mgh = −(1.00 kg)× (9.81 m s−2)× (0.100 m) = −0.981 J
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Integration of Eq. (2.59) yields an expression for work when P = P (V, T ):

w = −
point 2∫

point 1

Pext(V, T )dV




= −

point 2∫

point 1

P (V, T )dV




 (2.60)

where the end points of the line integrals are located on the (P, V ) plane.

Example. The state of a mole of gas can be changed from (2P0, V0) to (P0, 2V0) by
infinitely many different quasistatic paths (two different choices are shown below):

Paths on the PV plane.

The total amount of
work depends on the
path!

Path 1:

1. Pressure is constant (2P0), expansion from V0

to 2V0 (heat flows in).

2. Volume is constant (2V0), drop in pressure
from 2P0 to P0 (heat flows out). Total amount
of work (w) = −2P0V0 (contribution from the
first segment only).

Path 2:

1. Volume is constant (V0), drop in pressure from
2P0 to P0 (heat flows out).

2. Pressure is constant (P0), expansion from V0 to
2V0 (heat flows in). Total amount of work (w)
= −P0V0 (contribution from the second
segment only).
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Adiabatic process: The system is thermally insulated and it cannot exchange heat
with its surroundings. The two paths in the previous example involved heat ex-
change and therefore they were not adiabatic processes.

For an adiabatic process in a closed system, the change in system’s internal energy
(U) is directly related to work:

∆U = w (2.61)

Note that ∆U follows the same sign convention that w does. Molar internal energy
is expressed with a symbol Ū (J mol−1).

Example. A thermally insulated water tank with a stirrer.
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Let’s consider a water tank that is in thermal contact and has no stirrer (i.e. no
source of work):

If the hot plate is warmer than the water, the water temperature increases (heat
transfer). In previous example increase in system temperature was achieved by
doing work on the system. Thus increase in the internal energy of the system can
be achieved either by doing work on it or by transferring heat into it.

Both work and heat are forms of energy crossing the boundary between the system
and the surroundings. When no work is done on the system, the change in its
internal energy can be expressed as:

∆U = q (no work done) (2.62)

Both work and heat have the same SI unit (J).
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2.2 First law of thermodynamics and internal energy

The first law of thermodynamics states that:

∆U = q + w (2.63)

dU = dq + dw (2.64)

Note that q and w indicate changes in heat and work – in this sense ∆ is “missing”
in this notation.

The above equations are obtained by combining the results from previous section for
work and heat. The internal energy of a system (U) is a function of state variables
(for example, P, V, T ; closed system). Internal U energy is an extensive property.

The differential corresponding to the internal energy, dU , yields zero when inte-
grated over a closed loop in the state space:

∮

dU = 0 (2.65)

However, the component differentials dq ad dw do not have this property.

Energy may be transferred in one form or another, but it cannot be created or
destroyed (energy conservation).

U depends on state variables, e.g. U(T, V, n) or U(T, P, n) for pure substances. For
mixtures, the composition must also be specified.
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2.3 Exact and inexact differentials

A differential with two independent degrees of freedom, can be expressed as (“Pfaf-
fian form”):

du = M(x, y)dx+N(x, y)dy (2.66)

For exact differential du functions M and N must correspond to some derivatives
of u. However, in general, there are differentials for which this does not hold. Such
differentials are called inexact differentials.

Test for exact differentials. Differential du is exact if and only if:
(
∂N(x, y)

∂x

)

y

=

(
∂M(x, y)

∂y

)

x

(2.67)

Example. Show that the following differential is exact:

du =

(

2xy +
9x2

y

)

︸ ︷︷ ︸

=M

dx+

(

x2 − 3x3

y2

)

︸ ︷︷ ︸

=N

dy

Solution. To show this, we verify that Eq. (2.67) holds:
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(
∂M

∂y

)

x

=

[
∂

∂y

(

2xy +
9x2

y

)]

x

= 2x− 9x2

y2

(
∂N

∂x

)

y

=

[
∂

∂x

(

x2 − 3x3

y2

)]

y

= 2x− 9x2

y2

Because both partial derivatives are equal, differential du is exact.

For functions with three independent variables, the Pfaffian form is:

du = M(x, y, z)dx+N(x, y, z)dy + P (x, y, z)dz (2.68)

and the corresponding condition for exactness is now:

(
∂M

∂y

)

x,z

=

(
∂N

∂x

)

y,z

(2.69)

(
∂N

∂z

)

x,y

=

(
∂P

∂y

)

x,z
(
∂M

∂z

)

x,y

=

(
∂P

∂x

)

y,z
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Example. Show that the following differential is not exact but it can be trans-
formed into an exact differential by dividing both sides by x.

du =
(
2ax2 + bxy

)

︸ ︷︷ ︸

=M

dx+
(
bx2 + 2cxy

)

︸ ︷︷ ︸

=N

dy

Solution. Calculate the required partial derivatives and use Eq. (2.67):

(
∂M

∂y

)

x

=

[
∂

∂y

(
2ax2 + bxy

)
]

x

= bx

(
∂N

∂x

)

y

=

[
∂

∂x

(
bx2 + 2cxy

)
]

y

= 2bx+ 2cy 6= bx

Thus the original differential is not exact. After dividing du by x, however:

(
∂M ′

∂y

)

x

=

[
∂

∂y
(2ax+ by)

]

x

= b

(
∂N ′

∂x

)

y

=

[
∂

∂x
(bx+ 2cy)

]

y

= b

This procedure of transforming an inexact differential into an exact one is called
the method of integrating factors.
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Line integrals are evaluated over a specified path in the x-y (or in higher dimen-
sional spaces):

(x1,y1)∫

(x0,y0)

du =

(x1,y1)∫

(x0,y0)

[M(x, y)dx+N(x, y)dy] (2.70)

However, this is not yet well defined because there are infinitely many paths that
connect points (x0, y0) and (x1, y1) in the x-y plane. One such path is shown below:
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An integration path (C) must be specified for line integrals:
∫

C

du =

∫

C

[M(x, y)dx+N(x, y)dy] (2.71)

Note that line integrals are sometimes also called path integrals.

When the integration path is defined by functions y = y(x) and x = x(y), the line
integral along this path can be calculated as:

∫

C

du =

x1∫

x0

M(x, y(x))dx+

y1∫

y0

N(x(y), y)dy (2.72)

Example. Find the value of the following line integral:

∫

C

du =

∫

C

[(2x+ 3y)dx+ (3x+ 4y)dy]

where path C is the straight-line segment given by y = 2x+ 3 from (0, 3) to (2, 7).

Solution. In the first term, y must be replaced by 2x+ 3, and in the second term
x must be replaced by (1/2)(y − 3),
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∫

C

du =

2∫

0

[2x+ 3(2x+ 3)] dx+

7∫

3

[
3

2
(y − 3) + 4y

]

dy

=

(
8x2

2
+ 9x

)∣
∣
∣
∣

2

0

+

(
11y2/2

2
− 9

2
y

)∣
∣
∣
∣

7

3

= 126

If differential du is exact, then the line integral does not depend on path but only
on the end points:

∫

C

du =

∫

C

[(
∂u

∂x

)

dx+

(
∂u

∂y

)

dy

]

= u(x1, y1)− u(x0, y0) (2.73)

For closed paths, this always yields zero (this does not hold for ineact differentials):
∮

du = 0 (over a closed loop) (2.74)

Example. Show that the line integral of the previous example has the same value
as the line integral of the same differential on the rectangular path from (0, 3) to
(2, 3) and then to (2, 7).
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Solution. The integration path is not a single curve but two line segments. So we
must carry out the integration separately for each segment. On the first segment, y
is constant, so dy = 0 and the integral containing dy vanishes. On the second line
segment, x is constant, so dx = 0 and the integral containing dx vanishes:

∫

C

du =

2∫

0

(2x+ 9)dx+

7∫

3

(6 + 4y)dy =

(
2x2

2
+ 9x

)∣
∣
∣
∣

2

0

+

(

6y +
4y2

2

)∣
∣
∣
∣

7

3

= 126

Note that this is the same result as obtained in the previous example.

Example. Show that differential du = dx + xdy is inexact and carry out line
integration using two different paths between points (0, 0) and (2, 2). Path 1 is
defined as: straight line from (0, 0) to (2, 2) and path 2 as: rectangular path (0, 0)
to (2, 0) to (2, 2).

Solution. First we show that the differential is inexact:

[
∂

∂y
(1)

]

x

= 0 and

[
∂

∂x
(x)

]

y

= 1 6= 0

⇒ du is inexact differential.
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Integration along path 1 (denoted by C1, a straight line y = x):

∫

C1

du =

∫

C1

dx+

∫

C1

xdy =

2∫

0

dx+

2∫

0

ydy = x|20 +
y2

2

∣
∣
∣
∣

2

0

= 4

Integration along path 2 (denoted by C2):

∫

C2

du =

∫

C2

dx+

∫

C2

xdy =

2∫

0

dx+

2∫

0

2dy = x|20 + 2y|20 = 2 + 4 = 6

Thus the value of the line integral depends on path. This is because du is inexact.

For three independent variables, line integral is defined as:
∫

C

du =

∫

C

[M(x, y, z)dx+N(x, y, z)dy + P (x, y, z)dz] (2.75)

Furthermore, the integral can be evaluated using:

∫

C

du =

x1∫

x0

M(x, y(x), z(x))dx+

y1∫

y0

N(x(y), y, z(y))dy+

z1∫

z0

P (x(z), y(z), z)dz (2.76)
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If du is exact differential, the value of the line integral depends only on the endpoints:
∫

C

du = u(x1, y1, z1)− u(x0, y0, z0) (2.77)

In general, for cyclic processes:
∮

du = 0 (only if du is exact) (2.78)
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2.4 Work of compression and expansion of a gas at
constant temperature

Work can be done on/by a gas upon compression/expansion. In the following exam-
ple gas is the system and the surroundings constitutes of a piston and a thermostat
(i.e. a container that keeps the temperature constant).

Assumptions:

◮ No friction

◮ No external pressure outside the
cylinder (from atmosphere)

◮ Cylinder immersed in a
thermostat (constant T )

Compression by a piston with mass m.

Consider a two stage process:

1. Pressure P1, Volume V1 and Temperature T (stops removed but the piston
has not yet fallen down due to gravity).

2. Pressure P2, Volume V2 and Temperature T (the piston has fallen down).
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At both points the external pressure is Pext =
mg
A

where A is the area of the piston.
Thus the force pushing the piston down is mg. At the end of the process the gas
pressure will be the same as the external pressure: Pext = P2. Recall that work was
defined as “force × distance”, which in this case means (see Eq. (2.60), P1 < P2):

wcomp =

fin∫

ini

dw =

fin∫

ini

−Pext
︸ ︷︷ ︸

constant

dV = −P2(V2 − V1) = P2(V1 − V2) > 0 (2.79)

or expressed in another way without reference to P2:

wcomp =

fin∫

ini

−Pext
︸ ︷︷ ︸

constant

dV =
mg

A
× (Ah)
︸ ︷︷ ︸

=∆V

= mg × h (force × distance) (2.80)

where the positive sign for wcomp signifies that work was done on the system and h
denotes the distance that the piston moved (the shaded area on the previous page
P -V plot).

Next, consider expansion of a gas in a two stage process:
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Expansion of gas (piston pushed up).

Work done by the system is given by (P1 > P2, P2 = Pext):

wexp =

fin∫

ini

−Pext
︸ ︷︷ ︸

constant

dV = −Pext(V2 − V1) = P2(V1 − V2) < 0 (2.81)

Note: |wcomp| > |wexp|. More work is required to compress the gas than can be
obtained by expansion. This process is irreversible.

Is it possible to move the piston in such a way that |wexp| = |wcomp|? In other
words, is it possible to make the process reversible in terms of work?
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Yes. Instead of single-step compression, we should use many compression steps with
increasing external pressure Pext. This can be achieved by increasing the mass
gradually (m1 < m2 < m3 < ...):

In other words: do not apply all the force at once but increase it gradually. Note
that in a reversible process the pressure inside the cylinder and the external pressure
are equal at all times. In this case the work is obtained by (P is the pressure inside
the cylinder):

wcomp =

fin∫

ini

dw = −
V2∫

V1

PextdV = −
V2∫

V1

PdV (2.82)
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Expansion work wexp can also be carried out using infinite expansion steps (m1 >
m2 > m3...):

This infinite expansion process is also reversible. The expression for work is now:

wexp =

fin∫

ini

dw = −
V1∫

V2

PdV (2.83)

Work over one closed cycle (reversible compression followed by reversible expansion):

wcycle = −
V2∫

V1

PdV

︸ ︷︷ ︸

compression

−
V1∫

V2

PdV

︸ ︷︷ ︸

expansion

= −
V2∫

V1

PdV +

V2∫

V1

PdV = 0 (2.84)

Thus the infinitesimal process is reversible. Many calculations can be carried out
exactly only for reversible processes. Most processes in nature are, however, irre-
versible. Sometimes they can be approximated as reversible processes.
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For a reversible process Pext = P (in the cylinder) always. Assuming that the gas
in the cylinder is ideal, we have for reversible expansion (T constant, V1 < V2, ini
= 1 and fin = 2):

wexp,rev = −
V2∫

V1

PextdV = −
V2∫

V1

PdV = −
V2∫

V1

nRT

V
dV = −nRT ln

(
V2

V1

)

(2.85)

For reversible compression (T constant, V1 > V2, ini = 1 and fin = 2), we have

wcomp,rev = −nRT ln
(

V2
V1

)

> 0.

For an ideal gas at constant temperature, we have P1V1 = P2V2 and Eq. (2.85) can
then be written:

wexp,rev = −nRT ln

(
V2

V1

)

= −nRT ln

(
P1

P2

)

= nRT ln

(
P2

P1

)

(2.86)

The maximum amount of work of isothermal expansion of a van der Waals gas is:

wexp,rev = −
V2∫

V1

(
nRT

V − nb
− an2

V 2

)

dV = −nRT ln

(
V2 − nb

V1 − nb

)

+ an2

(
1

V1
− 1

V2

)

(2.87)

Note: During reversible processes the system and the surroundings are in equilib-
rium. However, such processes are ideal since they take infinitely long time to
proceed.
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Example. Calculate the work done when 50 g of iron reacts with hydrochloric acid
in (a) a closed vessel of fixed volume, (b) an open beaker at 25 ◦C (reversible). The
reaction is:

Fe(s) + 2HCl(aq)→ FeCl2(aq) + H2(g)

Assume that H2 follows the ideal gas law.

Solution.

(a) The volume cannot change, so no PV -work is done and wexp = 0.
(b) The gas drives back the atmosphere and therefore wexp = −Pext∆V . We can
neglect the initial volume (V1) because the final volume (V2) after production of
gas, is much larger. We assume that H2 behaves according to the ideal gas law (n
moles of H2):

∆V = V2 − V1 ≈ V2 =
nRT

P
=

nRT

Pext

where P is the gas pressure and Pext the atmospheric pressure. Note that solids
have negligible volumes compared to gases and therefore we have:

wexp = −Pext∆V ≈ −Pext ×
nRT

Pext
= −nRT

When 1 mol of Fe is consumed in the reaction, 1 mol H2 is produced.
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Because the molar mass of Fe is 55.85 g mol−1, it follows that:

wexp ≈ −
50 g

55.85 g mol−1
×
(
8.3145 JK−1mol−1

)
× (298.15 K) = −2.2 kJ

Thus the system (H2 gas from the reaction) does 2.2 kJ of work driving back the
atmosphere.

Example. Work of expansion of an ideal gas. One mole of an ideal gas expands
from 5 to 1 bar at 298 K. Calculate wexp (a) for reversible expansion and (b) for
an irreversible expansion against a constant external pressure of 1 bar.

Solution. (a) We use Eq. (2.86) with P1 = 5 bar (ini) and P2 = 1 bar (fin):

wexp,rev = nRT ln

(
P2

P1

)

= (1 mol)×
(
8.3145 J K−1 mol−1

)
×(298 K)×ln

(
1 bar

5 bar

)

= −4000 J
(b) The irreversible work is given by Eq. (2.81):

wexp,irrev = −P2 (V2 − V1) = −P2

(
nRT

P2
− nRT

P1

)

= nRT

(
P2

P1
− 1

)

(1 mol)×
(
8.3145 J K−1 mol−1

)
× (298 K)×

(
1 bar

5 bar
− 1

)

= −2000 J
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2.5 Various kinds of work

The following are most often encountered types of work:

Type of work Differential Comments Conjugate pairs

Expansion, −PextdV “PV -work” Pressure P , Volume V
Hydrostatic

Surface expansion γdAs γ is surface tension γ and As

and As is surface area

Extension, FdL Change in length Force F , Length l
elongation

Electrical φdQ Transport of electrons Potential difference φ,
Electric charge Q
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Surface tension (γ): “Force / distance” (unit N m−1):

γ =
F

L
(2.88)

Surface tension of water.
Idealized experiment to determine

surface tension.

For a film with two sides, the force F acting on the bar (L is the width) is given by:

F = 2γL (2.89)

Work corresponding to moving the bar by ∆x is given by (“force × distance”):

w = F∆x (2.90)

By combining these two equations we get:

w = F∆x = γ 2L∆x
︸ ︷︷ ︸

=∆As

= γ∆As (2.91)

The differential form of Eq. (2.91) is:

dw = γdAs (2.92)

In other words, to get work w, multiply the surface area (m2) by surface tension (J
m−2). Note that units N m−1 and J m−2 are equivalent.
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What is the microscopic origin of surface tension? Consider water surface, for ex-
ample:

Molecules residing on the curved surface are missing neighboring atoms which they
could hydrogen bond with. Surface tension depends clearly on the molecule –
molecule (or atom – atom) interaction strength. For example, surface tension of
water (hydrogen bonding) is much larger than for liquid argon (van der Waals
binding).
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Example. Calculate the amount of work that a spherical bubble in superfluid 4He
does when its radius changes from 10 Å to 20 Å. Surface tension of L-He γ is 0.18
cm−1 Å−2.

Expansion of electron bubble.

The differential surface area of the bubble is given by:

dAs = 4π (r + dr)2 = 4πr2
︸ ︷︷ ︸

constant

+8πrdr + 4π (dr)2
︸ ︷︷ ︸

2nd order

→ 8πrdr

Eq. (2.92) now gives: dw = γdAs = 8πrγdr

Integration from the initial radius ri to the final radius rf gives:

w =

rf∫

ri

dw = 8πγ

rf∫

ri

rdr = 4πγ
(

r2f − r2i

)
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We could proceed by changing everything to SI units, but here the expression is
quite simple and we just make sure to use compatible units:

w = 4π ×
(

0.18 cm−1 Å
−2
)

×
[(
20 Å

)2 −
(
10 Å

)2
]

= 680 cm−1 = 1.4× 10−20 J

Surface tension work can also be understood in terms of surface energy.

Notes:

◮ The work in above example is positive, which means that work was done on
the bubble interface (i.e., interface area becomes larger).

◮ Recall that we don’t usually use notation ∆w to indicate change in work
because work is a relative quantity. The same applies for q. Instead of ∆w,
we just use w.

Extension/elongation work:

dw = FdL (2.93)

where F is the extension force and dL is the displacement. For example: elongation
of a rubber band.
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Electrical work:

dw = φdQ (2.94)

where φ is the electric potential difference and dQ is the differential change in charge.
For example: electron transport in electrolytic cell.

A more complete form of the first law is (“heat dq + work dw”):

dU = dq − PextdV + γdAs + FdL+ φdQ (2.95)
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2.6 Change in state at constant volume

Previously we have kept temperature constant and concentrated on the concept of
work. In this section, under constant volume, heat must also be considered (here
work w will be zero). The amount of heat (q) can be measured by determining
the change in temperature of a mass of material that absorbs the heat. The heat
capacity (C) of the system is defined as:

C =
dq

dT
or CdT = dq (2.96)

where the heat capacity acts as a proportionality constant between change in tem-
perature and the amount of heat. Notice that the differential corresponding to heat
is inexact. This means that a path must be specified along which the differential is
evaluated.

For a chemically inert system we can use two variables for describing the system
(T and V chosen here). Because the internal energy U is a state function (i.e. the
corresponding differential is exact), we have the total differential of U :

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

dV (2.97)

Substituting dU = dq − PextdV in Eq. (2.97) gives (only PV -work included):

dq =

(
∂U

∂T

)

V

dT +

[

Pext +

(
∂U

∂V

)

T

]

dV (2.98)

By choosing the path in such a way that the volume V is constant, we have dV = 0
and:
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dqV =

(
∂U

∂T

)

V

dT (2.99)

Both the temperature and the heat transfer can be measured and thus it is conve-
nient to define heat capacity CV (T ) at constant volume as:

CV (T ) ≡ dqV
dT

=

(
∂U

∂T

)

V

(2.100)

For one mole of substance, heat capacity is denoted by C̄V .

Note: Temperature and heat are two different quantities. On molecular scales tem-
perature is related to the kinetic energy distribution of molecules in the substance.
Heat is related to the total energy of molecules (including potential energy).

At constant volume, Eq. (2.100) may be multiplied by dT and integrated (see also
Eq. (2.99)):

∆UV =

T2∫

T1

CV (T )dT = qV (2.101)

If CV is approximately constant between T1 and T2, we can simplify the above
result:

∆UV ≈ CV (T2 − T1) = CV ∆T (2.102)



72

Now we know what
(

∂U
∂T

)

V
means but how about

(
∂U
∂V

)

T
? To see this, we keep T

constant (Eq. (2.97)):

Joule’s experiment: Gas expands

into vacuum

dq =

[

Pext +

(
∂U

∂V

)

T

]

dV (2.103)

Joule found in his experiments that ∆T ≈ 0
and therefore q ≈ 0. Rigorously this can be
shown to hold for ideal gases. This implies
that for ideal gases we have:

dq = 0 (2.104)

If we consider an ideal gas in a process where Pext = 0 and dV 6= 0 (Joule’s
experiment), it follows that (Eq. (2.103)):

(
∂U

∂V

)

T

= 0 for an ideal gas (2.105)

This result does not hold for real gases. In real gases molecules interact with each
other and a change in volume affects the average distance between molecules.
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2.7 Enthalpy and change of state at constant pressure

Constant-pressure processes are more common in chemistry than constant-volume
processes because many experiments are carried out in open vessels. If only pressure-
volume work is done and the pressure is constant and equal to the applied pressure
(Pext), we have wP = −Pext∆V = −P∆V (P is the pressure of the system; quasi-
static system). Now the change in internal energy (∆U) can be written as (see Eq.
(2.63)):

∆U = qP + wP = qP − P∆V (2.106)

where subscript P refers to a process at constant pressure (i.e. isobaric process).

Denote the initial state by 1 and the final state by 2 and write ∆U and ∆V explicitly:

U2 − U1 = qP − P (V2 − V1) (2.107)

Rearranging terms gives:

qP = (U2 + PV2)
︸ ︷︷ ︸

=H2

− (U1 + PV1)
︸ ︷︷ ︸

=H1

= H2 −H1 = ∆H (2.108)

where we have used notation H = U + PV and H is the enthalpy.
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From Eq.(2.108) it also follows that the differentials corresponding to heat (dqP )
and enthalpy (dH) must be equal (at constant pressure):

dqP = dH (H is a state function and dH is exact) (2.109)

Because dH is an exact differential, we can write the total differential as:

dH =

(
∂H

∂T

)

P

dT +

(
∂H

∂P

)

T

dP (2.110)

Under constant pressure dP = 0 and if we combine Eqs. (2.109) and (2.110), we
get:

dqP =

(
∂H

∂T

)

P

dT (2.111)

We can now define heat capacity at constant pressure (CP ) as follows:

CP ≡
dqP

dT
=

(
∂H

∂T

)

P

(2.112)

Integration of Eq. (2.111) gives an expression for change in enthalpy (cf. Eq.
(2.102)):

∆HP =

T2∫

T1

CP (T )dT ≈ CP∆T (if CP constant over T1, T2 ) (2.113)
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Example. Enthalpy change can be measured with a constant-pressure calorimeter.
A simple example of such calorimeter is the “coffee-cup-calorimeter”. 10.0 g of ice
at 273 K is added to such calorimeter containing 100.0 g of water at 303 K. The
heat capacity of the calorimeter is 10.0 J K−1. What is the final temperature of
the water in the cup? It was observed that all ice melted and therefore we know
that all ice was transformed to water.

Solution. Overall, the enthalpy is conserved (thermal insulation):

∆H
ice

melts

+∆H
cold water

warms to

final temp.
︸ ︷︷ ︸

added ice

+ ∆H
water

cools
︸ ︷︷ ︸

water present

in the cup

+∆H
apparatus

cools
︸ ︷︷ ︸

coffee cup

= 0

Enthalpy change for the melting process can be obtained by multi-
plying the mass of ice by the enthalpy of fusion (will be discussed
in more detail later):

∆Hice melts = mice∆fusH = (10.0 g)×
(
333 J g−1

)

︸ ︷︷ ︸

from table

= 3330 J

Next we calculate the change in enthalpy when water at 273 K warms up to the
final temperature (see Eq. (2.113)):
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where Tf denotes the (still unknown) final temperature. On the other hand, the
water initially at 303 K cools down to the final temperature Tf :

∆H
water

cools

= mwaterCP,H2O
∆T = (100.0 g)×

(
4.19 J g−1 K−1

)
×
(
Tf − 303 K

)

Finally, we have to consider cooling of the calorimeter from 303 K down to the
final temperature:

∆H
apparatus

cools

= Ccalorimeter∆T =
(
10.0 J K−1

)
×
(
Tf − 303 K

)

Because the net change in enthalpy is zero (conservation of enthalpy), we can
solve for Tf :
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(3330 J) +
(
41.9 J K−1

)
×
(
Tf − 273 K

)
+
(
419 J K−1

)
×
(
Tf − 303 K

)

+
(
10.0 J K−1

)
×
(
Tf − 303 K

)
= 0⇒ Tf = 293 K

Note: In non-SI units the temperatures correspond to:
273 K = 31.7 ◦F = 0 ◦C (ice)
293 K = 67.6 ◦F = 20 ◦C (final temperature)
303 K = 85.7 ◦F = 30 ◦C (water)



78
2.8 Heat capacities

Values for molar heat capacities can be found, for example, from the National Insti-
tute of Standards and Technology (NIST) database (http://webbook.nist.gov/chemistry/).
It has been observed experimentally that molar heat capacities at constant pressure
depend on temperature.

Empirical power series expansion:

C̄P ≈ α+ βT + γT 2 (2.114)

Inserting this form into Eq. (2.113) gives:

∆H = α (T2 − T1)+
β

2

(
T 2
2 − T 2

1

)
+
γ

3

(
T 3
2 − T 3

1

)

(2.115)

Values for α, β and γ are given in the above database. Note that the temperature
range for these polynomial fits must be observed. In above, 1 refers to the initial
and 2 to the final state

http://webbook.nist.gov/chemistry/
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The relation between CP and CV :

Consider Eq. (2.98) at constant volume and pressure (with pressure P = Pext):

dqP =

(
∂U

∂T

)

V

dT +

[

Pext +

(
∂U

∂V

)

T

]

dV = CV dT +

[

Pext +

(
∂U

∂V

)

T

]

dV (2.116)

division by dT ⇒ dqP
dT
︸ ︷︷ ︸

=CP

= CV +

[

Pext +

(
∂U

∂V

)

T

](
∂V

∂T

)

P

⇒ CP − CV =









Pext +

(
∂U

∂V

)

T
︸ ︷︷ ︸

(term 1)









×
(
∂V

∂T

)

P
︸ ︷︷ ︸

(term 2)

> 0

where “term 1” is greater than zero (consider, for example, a van der Waals gas
where this term is equal to a/V̄ ) and “term 2” is also greater than zero because,
at constant pressure, increase in temperature will result in increased volume. Thus
we conclude that heat capacity at constant pressure is always greater than the heat
capacity at constant volume. This is not surprising because the former also includes
the PV -work and the work required to pull molecules apart.
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Example. Calculate CP − CV for an ideal gas (reversible process). Note that in
ideal gas, the gas molecules do not interact with each other.

Solution. To calculate the difference in heat capacities, we use Eq. (2.116). Be-
cause molecules do not interact with each other, the internal energy does not depend
on volume. Hence (∂U/∂V )T = 0. For an ideal gas, we have PV = nRT , from
which we can evaluate the partial derivative (∂V/∂T )P = nR/P . Inserting the
partial derivatives into Eq. (2.116) gives CP − CV = nR. This is the PV -work
required when temperature changes by 1 K.

Notes:

◮ Classical thermodynamics does not deal with molecular level information. It
knows nothing about atoms and molecules. In fact, when classical
thermodynamics was first developed, scientists did not know about atoms
and molecules at all.

◮ For liquids and solids, CP ≈ CV because they have small thermal
expansivities.

Results from the kinetic gas theory results for monoatomic ideal gas:

Ū =
3

2
RT (2.117)

H̄ =
5

2
RT (2.118)

C̄V =
3

2
R (2.119)

C̄P =
5

2
R (2.120)
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2.9 Joule-Thomson expansion

Adiabatic Joule-

Thompson with

Ti 6= Tf and

Pi > Pf .

Joule and Thomson (aka Lord Kelvin) observed a
change in gas temperature when it was expanded
through a throttle. To push one mole of gas through
the throttle, two processes must be considered (tem-
peratures remain constants on each side; they might,
however, be different):

1. Compression of gas on the left

2. Expansion of gas on the right

On compression, the work is given by wc = Pi∆V̄ =
Pi

(
V̄i − V̄f

)
= Pi

(
V̄i − 0

)
= PiV̄i (positive because

work is done on the system (gas)).

On expansion, the work is now we = Pf∆V̄ =
Pf

(
V̄i − V̄f

)
= Pf

(
0− V̄f

)
= −Pf V̄f (negative be-

cause work is done by the system (gas)).

James Prescott

Joule, English

physicist (1818 -

1889)

The total amount of work (for the gas) is then:

w = wc + we = PiV̄i − Pf V̄f (2.121)
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The system is thermally insulated, so that q = 0 (no heat exchange). Using Eq.
(2.63) we obtain:

∆Ū = Ūf − Ūi = q + w = PiV̄i − Pf V̄f (2.122)

Rearrangement of this equation gives:

Ūf + Pf V̄f
︸ ︷︷ ︸

=Hf

= Ūi + PiV̄i
︸ ︷︷ ︸

=Hi

(2.123)

This states that the enthalpy is conserved in the process (isenthalpic process). Based
on the experimental observation, we define the Joule-Thomson coefficient:

µJT = lim
∆P→0

T2 − T1

P2 − P1
=

(
∂T

∂P

)

H

(2.124)

which gives the change in temperature when pressure changes. At high temperatures
the coefficient is negative (J-T process results in heating) and at low temperatures
it is positive (J-T process results in cooling). The temperature, where the coefficient
is zero, is called the inversion temperature. The inversion temperature for N2 is 607
K and for H2 204 K.

Notes:

◮ The J-T coefficient is zero for ideal gases: 0 =
(

∂H
∂P

)

H
= 5

2
nR
(

∂T
∂P

)

H
.

◮ The cooling effect can be understood by decrease in the van der Waals
interaction due to lower pressure (i.e. increased potential energy) and
decrease in the kinetic energy (i.e. lower temperature).
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2.10 Adiabatic processes with gases

In an adiabatic process no heat is exchanged with the surroundings (dq = 0). If
only PV -work is involved, then the first law (Eq. (2.64)) states that:

dU = dq + dw = dw = −PextdV (2.125)

If work is done against external pressure, the temperature of the system drops
(note: adiabatic process; no thermal contact). If the system was in thermal contact,
the system would exchange heat with its surroundings and the temperature would
remain constant.

Consider an ideal gas. The change in internal energy (∆U) depends only on tem-
perature and not on volume (Eqs. (2.97), (2.105), (2.100)):

dU = CV dT , if CV is independent of T , we have: ∆U = CV ∆T (2.126)

On the other hand, we know that ∆U = w and therefore w = CV ∆T . Furthermore,
we know that w = −Pext∆V , which means that −Pext∆V = CV ∆T . This predicts
that upon increase in volume, the temperature decreases, for example.



84

When adiabatic expansion is carried out reversibly, the equilibrium pressure can be
substituted for the external pressure (Pext = P ). For an ideal gas we have:

C̄V dT = −PdV̄ = −RT

V̄
dV̄ ⇒ C̄V

dT

T
= −RdV̄

V̄
(2.127)

If we assume that the heat capacity is independent of temperature and integrate
both sides, we get:

C̄V

T2∫

T1

dT

T
= −R

V̄2∫

V̄1

dV̄

V̄
⇒ C̄V ln

(
T2

T1

)

= R ln

(
V̄1

V̄2

)

(2.128)

For an ideal gas we have C̄P − C̄V = R and thus we can rewrite Eq. (2.128) as:

T2

T1
=

(
V̄1

V̄2

)γ−1

where γ =
C̄P

C̄V
(2.129)

The same result can be written in alternative forms:

T2

T1
=

(
P2

P1

)(γ−1)/γ

(2.130)

P1V̄
γ
1 = P2V̄

γ
2 (2.131)
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20 25 30 35 40 45 50

Molar volume (L mol
-1

)

0

0.2

0.4

0.6

0.8

1

P
 (

b
ar

)
Isothernal expansion

Adiabatic expansion

Initial

Final
∆P

Isothermal and reversible adi-
abatic expansions of one mole
of an ideal monoatomic gas.
The isothermal case results in
higher pressure in the end be-
cause there is heat transfer to
the system from the surround-
ings (to keep the temperature
constant). In the adiabatic
case the temperature decreases
during expansion.

Example. Consider an adiabatic, re-
versible expansion of 0.020 mol Ar
(ideal gas), initially at 25 ◦C, from 0.50
L to 1.00 L. What is the final temper-
ature and how much work is done?

Solution. First we have to modify Eq.
(2.129):

T2 = T1

(
V̄1

V̄2

)γ−1

Substituting the values, we get the fi-
nal T2 (see Eqs. (2.119) and (2.120)):

T2 = (298 K)×
(
0.50 L

1.00 L

)0.666

= 188 K

From the temperature difference we
can calculate the work (C̄V = 12.47
J K−1 mol−1; ideal gas):

wrev = nC̄V ∆T

= (0.020 mol)×
(
12.47 J K−1 mol−1

)

× (−110 K) = −27 J

Note the sign: the gas does work.
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2.11 Thermochemistry

Chemical reaction (or phase change) in a system is said to be:

Exothermic, if heat q < 0 (i.e. it releases heat).
Endothermic, if heat q > 0 (i.e. it requires heat).

Since enthalpy is an extensive property that is a function of the state of the system
(homogenous of degree 1; see Eq. (1.42)), we can express it in terms of partial molar
enthalpies:

dH =

Ns∑

i=1

H̄idni (2.132)

where Ns is the number of species and Hi is the molar enthalpy of species i. When
the temperature and the pressure are constant, Eq. (2.109) gives:

dH = dqP =

Ns∑

i=1

H̄idni (2.133)

where subscript P refers to constant pressure.
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Notation of chemical reactions:

0 =

Ns∑

i=1

viBi (2.134)

where Bi is the chemical formula of species i and vi is the corresponding stoichio-
metric coefficient.

Example. Use the above notation to express the following chemical reaction:

H2 +
1

2
O2 → H2O

Solution. Insert the stoichiometric coefficients into Eq. (2.134):

0 = −1H2 −
1

2
O2 + 1H2O

Here v1 = −1, v2 = −1/2, v3 = 1 and Ns = 3.

Extent of chemical reaction (ξ) is defined as:

ni = ni0 + viξ (2.135)

where ni0 is the initial amount of species i (mol), ξ is the extent of reaction (mol)
and vi are the stoichiometric coefficients (dimensionless). Note that ξ evolves from
initial value of zero to the final value where any of the component ni’s reach zero.
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By combing Eqs. (2.133) and (2.135) we get:

dH = dqP =

Ns∑

i=1

H̄i vidξ
︸︷︷︸

=dni

(2.136)

Dividing both sides of this equation by dξ yields:

∆rH =

(
∂H

∂ξ

)

T,P

=
dqP

dξ
=

Ns∑

i=1

viH̄i (2.137)

where ∆rH is the reaction enthalpy. Reaction enthalpy tells us the rate of enthalpy
change at given point of reaction (ξ). Note that the reaction enthalpy depends on
the way the chemical equation is written. For example, 2H2+O2 → 2H2O has twice
the reaction enthalpy than H2 + 1

2
O2 → H2O. The SI unit of reaction enthalpy is

J mol−1.

Thermodynamic standard state:

Denoted by superscript ◦(degree). For a standard state, Eq. (2.137) reads:

∆rH
◦ =

Ns∑

i=1

viH̄
◦
i (2.138)
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The standard state of a substance at a specified temperature is its pure form at 1
bar.

The phase of the substance is indicated by g (gas), l (liquid) or s (solid).

Example. What is the standard state of CH3CH2OH (l) at 298 K?

Solution. The standard state is pure liquid ethanol at 298 K and 1 bar (external)
pressure.

Enthalpy change in chemical reactions:

Antoine Lavoisier,

French scientist

(1743 - 1794)

Pierre-Simon

Laplace, French

mathematician

and astronomer

(1749 - 1827)

Lavoisier & Laplace in 1780: “The
heat absorbed in decomposing a
compound must be equal to the heat
evolved in its formation under the
same conditions.”

This means that in forward and reverse
reactions the sign in ∆H is changed.

Germain Hess in 1840: “The overall
heat of a chemical reaction at constant
pressure is the same, regardless of the
intermediate steps involved.”
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Note that both previous statements follow directly from the first law of thermody-
namics.

Example. Burning of graphite (in presence of excess O2) to CO2:

C(graphite) + O2(g)→ CO2(g) ∆rH
◦ = −393.509 kJ mol−1

Note that the sign signifies that the reaction is exothermic (releases heat to the
surroundings).

Example. Burning of CO (in presence of excess O2) to CO2:

CO(g) +
1

2
O2(g)→ CO2(g), ∆rH

◦ = −282.98 kJ mol−1

Example. Dissociation of water to hydrogen and oxygen:

H2O(l)→ H2(g) +
1

2
O2(g), ∆rH

◦ = +286 kJ mol−1

Note that the “+” sign means that the reaction is endothermic (draws heat from
the surroundings).

For reactions, that cannot be studied directly, reaction enthalpies can be obtained
by dividing the reaction into parts, which can be studied with the desired accuracy.
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Example. The heat released by burning graphite to CO is difficult to measure
accurately because part of it might produce CO2 and part of the graphite might
not react at all. How can we determine the reaction enthalpy in this case?

Solution. First we write reactions for burning of graphite yielding CO2 and burning
of CO to CO2 (excess O2 to ensure that reactions proceed all the way):

(1) C(graphite) + O2(g)→ CO2(g), ∆rH
◦ = −393.51 kJ mol−1

(2) CO(g) +
1

2
O2(g)→ CO2(g), ∆rH

◦ = −282.98 kJ mol−1

Consider the reverse reaction of the last equation (Lavoisier & Laplace):

(3) CO2(g)→ CO(g) +
1

2
O2(g), ∆rH

◦ = +282.98 kJ mol−1

Next we add equations (1) and (3) together:

C(graphite) + O2(g) + CO2(g)→ CO2(g) + CO(g) +
1

2
O2(g)

and after cancelling terms from the left and right sides, we get:

C(graphite) +
1

2
O2(g)→ CO

The total reaction enthalpy is obtained by adding the corresponding values for the
partial reactions (Hess): ∆rH◦ = (−393.51 + 282.98) kJ mol−1 = −110.53 kJ mol−1.
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2.12 Enthalpy of formation

Recall that we don’t usually know the absolute values for the internal energy U but
only changes in it. Since H = U + PV , the same applies for H and therefore we
usually just concentrate on changes in enthalpy. However, we can specify a reference
state and consider differences in enthalpy from this state (relative enthalpies or
enthalpies of formation; ∆fH

◦). Such a state is obtained from the stoichiometric
amounts of the molecules in the given substance in the standard state and at the
temperature under consideration. When enthalpy of formation is calculated, one
mole of the product must be considered.

Example. What are the enthalpies of formation (∆fH
◦) for CO2(g), CO(g), C(g)

and O(g) under standard conditions (25 ◦C and 1 bar) and why?

Solution. Consider first CO2(g). The formation reaction for CO2 is: C(s) +
O2(g) → CO2(g) with ∆fH

◦ = −393.51 kJ mol−1. Note that always for the
formation reaction: ∆fH

◦ = ∆rH◦. The situation for CO is analogous. How
about C(g)? In this case the formation reaction is: C(graphite) → C(g). The
reaction enthalpy for this reaction is 716.7 kJ mol−1 under the present conditions
(Numerical data can be found from the NIST Chemistry Webbook).

When the enthalpies of formation for each substance in a chemical reaction are
known, it is possible to calculate the reaction enthalpy by (both enthalpies under
the same conditions):

∆rH
◦ =

Ns∑

i=1

vi∆fH
◦
i (2.139)
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Enthalpy of formation for a compound can be determined:

1. Experimentally: Calorimetric measurements, temperature variations of
equilibrium constants, spectroscopic determination of dissociation energies.

2. Theoretically: From the first principles using electron structure methods.

Note: The first law of thermodynamics cannot determine if the reaction will occur
spontaneously or not.

Example. What are the standard enthalpy changes at 298.15 K for the following
reaction:

CO2(g) + C(graphite)→ 2CO(g)

Solution. First we note that for graphite ∆fH
◦(graphite) = 0 (choice of reference

point). The other ∆fH
◦ values can be looked up from the NIST chemistry webbook

database: ∆fH
◦(CO) = −110.5 kJ mol−1 and ∆fH

◦(CO2) = −393.5 kJ mol−1.
Note that these values are given at 298.15 K temperature. The standard reaction
enthalpy is now given by:

∆rH
◦ = 2∆fH

◦(CO)−∆fH
◦(CO2)−∆fH

◦(C(graphite))

= 2
(
−110.5 kJ mol−1

)
−
(
−393.5 kJ mol−1

)

= 172.5 kJ mol−1
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If we need to calculate reaction enthalpies at some other temperature than 298.15
K, we have to use heat capacity CP to account for the change in temperature
(Kirchhoff’s law):

Starting from the reactants, calculate the change in enthalpy when temperature is
changed from T to 298 K, use the known reaction enthalpy for the reaction, and
calculate the change in enthalpy when temperature is changed back from 298 K to
T .
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The expression for ∆rH◦ at the given temperature T is therefore:

∆rH
◦
T =

=−
T
∫

298 K
...

︷ ︸︸ ︷

298 K∫

T

C◦
P,react(T )dT +∆rH

◦
298 K +

T∫

298 K

C◦
P,product(T )dT (2.140)

∆rH
◦
T = ∆rH

◦
298K +

T∫

298 K

≡C◦
P,product−C◦

P,react
︷ ︸︸ ︷

∆rC
◦
P (T ) dT (2.141)

∆rC
◦
P (T ) =

Ns∑

i=1

viC̄
◦
P,i(T ) (total heat capacity change in the reaction) (2.142)

To get the temperature dependency of the reaction heat capacity (∆rC◦
P ), we use

the empirical form of Eq. (2.114):

∆rC
◦
P = ∆rα+ (∆rβ)T + (∆rγ)T

2 (2.143)

with ∆rα =

Ns∑

i=1

viαi, ∆rβ =

Ns∑

i=1

viβi and ∆rγ =

Ns∑

i=1

viγi
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If the values α, β and γ for each species i are known, it is possible to insert them
into Eq. (2.143) and further use Eq. (2.142) to obtain the reaction heat capacity:

∆rH
◦
T = ∆rH

◦
298 K +

T∫

298 K

[
∆rα+∆rβT +∆rγT

2
]
dT (2.144)

= ∆rH
◦
298 K +∆rα (T − 298.15 K) +

∆rβ

2

(

T 2 − (298.15 K)2
)

+
∆rγ

3

(

T 3 − (298.15 K)3
)

In principle, it would be possible to choose another reference temperature. Some-
times absolute zero temperature is used (∆rH◦

0 K). For a diatomic molecule, this
would correspond to the bond dissociation energy. Note that other empirical para-
metrizations are often also used. For example, the NIST chemistry webbook uses
the Shomate equation, which is essentially a 3rd order polynomial with a 1/T 2 term
added.
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Example. The standard enthalpy of formation of gaseous H2O at 298 K is −241.8
kJ mol−1 (constants obtained from the NIST chemistry webbook). Estimate its
value at 373 K given the following values for the molar heat capacities at constant
pressure: H2O (g): ≈34 J K−1 mol−1; H2 (g): 28.8 J K−1 mol−1; O2 (g): 28.9 J
K−1 mol−1. Assume that the heat capacities are independent of temperature.

Solution. The reaction is: H2(g) +
1
2
O2(g) → H2O(g). When the heat capacities

are independent of temperature, Eq. (2.141) can be replaced with:

∆rH
◦
373 K = ∆rH

◦
298 K + ((373 K)− (298 K))

︸ ︷︷ ︸

∆T=75 K

∆rC
◦
P

To proceed, we need to evaluate ∆rC◦
P :

∆rC
◦
P = C◦

P,H2O(g) −
(

CP,H2(g) +
1

2
C◦

P,O2(g)

)

= 34 JK−1mol−1 −
(

28.8 JK−1mol−1 +
1

2
× 28.9 JK−1mol−1

)

= −9.4 JK−1mol−1

Using this we can calculate ∆rH◦
373 K:

∆rH
◦
373 K = −241.8 kJ mol−1 + (75 K)×

(
−9.4 J K−1mol−1

)
≈ −243 kJ mol−1
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2.13 Calorimetry

Constant pressure calorimeter.
Experimental determination of
∆H.

When reactants A and B are
mixed in the calorimeter, heat
is either released or absorbed.
This is observed using a ther-
mometer. Note: PV -work is
possible.

Constant volume calorimeter.
Experimental determination of
∆U .

A compound reacts with O2

(combustion). The heat re-
leased from the reaction, is
conducted to the surround-
ing water bath. Changes
in the bath temperature are
measured with a thermometer.
Note: no PV -work is possible.
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Constant pressure calorimeter: Chemical reaction: R → P (volume may change).

∆HA = ∆H(T1) + ∆HP (2.145)

∆HA = ∆HR +∆H(T2) (2.146)

where ∆HA is the overall
enthalpy change.

Two different ways to proceed from reactants
to products.

The overall enthalpy is conserved : ∆HA = 0. Thus we have two equations for ∆H
at T1 or T2 (∆T small; see Eq. (2.112) with ∆P = 0):

∆H(T1) = −∆HP = −
∗

︷ ︸︸ ︷

[CP (P) + CP (Cal)] (T2 − T1) = −CP,eff (P)∆T (2.147)

∆H(T2) = −∆HR = − [CP (R) + CP (Cal)]
︸ ︷︷ ︸

∗∗

(T2 − T1) = −CP,eff (R)∆T (2.148)

CP (P) = (constant pressure) heat capacity of the product.
CP (R) = (constant pressure) heat capacity of the reactant.
CP (Cal) = (constant pressure) heat capacity of the calorimeter.

Note: All CP ’s above are extensive variables (i.e. not molar quantities). In practice,
CP (cal) dominates and CP,eff (P ) ≈ CP,eff (R).
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If ∆H has been determined in a calorimetric experiment, ∆rH for a balanced
chemical reaction can be calculated using:

∆rH =
∆H

∆ξ
(ξ = the extent of reaction; see Eq. (2.135)) (2.149)

If ∆ξ ≈ 1 then ∆rH ≈ ∆H. How can we determine CP (cal) in Eqs. (2.147) and
(2.148)?

Use a calibrated heater to supply heat into the system and observe the temperature
change using a thermometer. The amount of heat supplied by the heater is:

q =

t∫

0

P (t)dt = UI
︸︷︷︸

=P

t∫

0

dt = RI2t (2.150)

R =
U

I
(Ohm’s law) (2.151)

P = UI (definition of power) (2.152)

where q is the heat supplied by the electrical heater element, P is the power dis-
sipated (constant; Watt), U is the applied potential (Volt; not internal energy),
I is the current (Ampere) and R is the heater resistance (Ohm). Alternatively, a
reference chemical reaction with known heat release can be used.

By recording data on q vs. T , it is possible to obtain the total heat capacity from
the slope, ∆q/∆T , of this graph.
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Constant volume calorimeter: Chemical reaction: R → P (pressure may change).
At constant volume (∆V = 0), there cannot be any PV -work. This means that:

P∆V = 0 (2.153)

Eq. (2.102) states that:

∆U = CV ∆T (2.154)

when ∆T is small (such that CV is independent of T ). Analogously to Eqs. (2.147)
and (2.148) we have:

∆U(T1) = −∆UP = − [CV (P) + CV (Cal)] (T2 − T1) = −CV,eff (P)∆T (2.155)

∆U(T2) = −∆UR = − [CV (R) + CV (Cal)] (T2 − T1) = −CV,eff (R)∆T (2.156)

The molar quantity is given by:

∆rU =
∆U

∆ξ
(2.157)

The difference between ∆rH and ∆rU is the PV -work. For an ideal gas this is
given by (Ns is the number of gaseous components, T ≈ constant, vi = ∆ni/∆ξ):

∆rH = ∆rU +
∆(PV )

∆ξ
≈ ∆rU +RT

Ns∑

i=1

vg,i (2.158)
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where vg,i is the stoichiometric coefficient for gaseous product i (solids and liquids
do not contribute).

Notes:

◮ In most experiments C(Cal) is large compared to C(R) or C(P), which
simply gives ∆U = −CV (Cal)∆T or ∆H = −CP (Cal)∆T .

◮ Most chemists are interested in enthalpies because they describe best
chemical reactions in open vessels. Theoretical chemists, however, would be
more interested in internal energy because it is more directly related to the
energies of bond forming/breaking.

Example. If we pass a current of 10.0 A from a 12 V power supply for 300 s, what
is the amount of heat supplied?

Solution. The amount of heat dissipated by the heater is given by q = UIt:

q = (10.0 A)× (12 V)× (300 s) = 3.6× 104 AVs
︸︷︷︸

= J

= 36 kJ

Example. If 1.247 g of solid glucose is burned in an adiabatic bomb calorimeter
(∆U = −2801 kJ mol−1), the temperature rises 1.693 K. What is the effective heat
capacity of the bomb calorimeter?
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Solution. Since the volume is constant, we have:

∆U = −CV (Cal)∆T ⇒ CV (Cal) = −∆U

∆T

CV (Cal) = − (1.247 g)× 1 mol

180.16 g
× −2801 kJ

1 mol
/ (1.693 K) = 11.44 kJ K−1

Example. Consider an adiabatic bomb calorimeter. When compounds change
their phase (e.g. from solid to gas or liquid to gas) during the reaction, the effective
volume of the calorimeter changes. Assuming that the resulting gas products behave
according to the ideal gas law, what is the correction required for the change in ∆H
due to PV -work?

Solution. If gaseous components are produced or consumed, the pressure inside
the calorimeter changes during the reaction. This causes ∆U and ∆H to deviate
from each other. This difference can be approximately expressed as:

∆H = ∆U +∆(PV ) = ∆U +∆(nRT ) ≈ ∆U +RT ×∆n

where we assume that the change in temperature is small. This correction is rather
small and typically less than 1 %.
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Several types of processes can be considered by calorimetric methods:

Solvation process:

HCl(g) + 5H2O(l)→ HCl solvated by 5H2O (∆Hsol(298 K) = −63.47 kJ mol−1)

Neutralization process: H-A + HO-B → H2O + A− + B+

For example, A could be Cl and B Na. When strong acid/base combination is neu-
tralized, the enthalpy difference is approximately constant and independent of the
base/acid pair. The reason is that the main contribution to the enthalpy difference
(heat of neutralization) originates from:

OH− +H+ → H2O where ∆rH
◦(298 K) = −55.84 kJ mol−1

When a dilute solution of weak acid/base is neutralized, the heat of neutralization
is less than that of strong acid/base neutralization.

Example. Calculate the enthalpy of formation of H+ and OH−.

Solution. We use the known reactions to deduce the enthalpy of formation:



105
H2O(l) = H+(aq) + OH−(aq) ∆rH◦ = 55.84 kJ mol−1

H2(g) +
1
2
O2(g) = H2O(l) ∆rH◦ = −285.83 kJ mol−1

H2(g) +
1
2
O2(g) = H+(aq) + OH−(aq) ∆rH◦ = −229.99 kJ mol−1

Note: Separate enthalpies of formation cannot be obtained for H+ and OH−, only
their sum. In most tablebooks, for H+ the associated ∆fH

◦ has been assigned to
zero.



Chapter 3: Second and third laws of thermodynamics

“The entropy of the universe tends to a maximum.”
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3.1 Entropy as a state function

The first law of thermodynamics says only that the total energy is conserved but
it does not provide any information as to whether the process can proceed sponta-
neously.

Example. Consider gas expanding into vacuum. In practice, we know that the gas
will flow from the high pressure chamber into the low pressure chamber.

The first law for this system only states that the total energy is conserved but says
nothing about which way the gas would flow.
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Example. In practice, we know that some chemical reaction proceed spontaneously
but some may require heat in order to proceed (nonspontaneous process)

Question: How do we identify a spontaneous process?

From the previous examples, it is obvious that a flow of heat is involved in these
processes. Heat is, however, not a state function (i.e. dq is not an exact differential).
This can be seen by inspecting Eq. (2.98):

dqrev =

(
∂U

∂T

)

V

dT +

[

Pext +

(
∂U

∂V

)

T

]

dV (3.159)

where we consider reversible heating and Pext = P . We will use Eq. (2.67) as the
test for exactness:

M =

(
∂U

∂T

)

V

and N = P +

(
∂U

∂V

)

T

(3.160)

and the required partial derivatives are then (U is well behaving, i.e. derivatives
exist and are continuous):

(
∂M

∂V

)

T

=

(
∂

∂V

(
∂U

∂T

)

V

)

T

=

(
∂

∂T

(
∂U

∂V

)

T

)

V

(3.161)

(
∂N

∂T

)

V

=

(
∂P

∂T

)

V

+

(
∂

∂T

(
∂U

∂V

)

T

)

V

Subtracting the two partial derivatives gives:
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(
∂N

∂T

)

V

−
(
∂M

∂V

)

T

=

(
∂P

∂T

)

V

(3.162)

Based on this dqrev would only be exact if
(

∂P
∂T

)

V
= 0. This does not hold even for

ideal gases:
(

∂P
∂T

)

V
= nR

V
(from PV = nRT ). Thus line integral of dqrev depends

on the path and qrev is not a state function of the system. Thus it is not useful to
consider heat as an indicator for a spontaneity of the process.

Recall that some times division of an inexact differential by a suitable term (inte-
grating factor) may result in exact differential. In this case it turns out that division
by T (temperature) yields an exact differential:

dqrev

T
=

(∂U/∂T )V

T
︸ ︷︷ ︸

=M

dT +

[
P

T
+

(∂U/∂V )T

T

]

︸ ︷︷ ︸

=N

dV (3.163)

By taking the partial derivatives required in the exactness test and subtracting
(∂M/∂V )T from (∂N/∂T )V (denoted by ∆) we get:

∆ =
1

T

(
∂P

∂T

)

V

− P

T 2
− 1

T 2

(
∂U

∂V

)

T

(3.164)

At least for ideal gases ∆ = 0 since (∂U/∂V )T = 0 (Joule’s experiment) and
PV = nRT . Thus dqrev/T is exact for ideal gases.
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The above expression for ∆ can be derived as follows. First calculate (∂N/∂T )V :

(
∂N

∂T

)

V

=

(
∂

∂T

(
P

T

))

V

+

(
∂

∂T

(
1

T
×
(
∂U

∂V

)

T

))

V

=
1

T

(
∂P

∂T

)

V

− P

T 2
+

(
∂

∂T

(
1

T
×
(
∂U

∂V

)

T

))

V

=
1

T

(
∂P

∂T

)

V

− P

T 2
− 1

T 2
×
(
∂U

∂V

)

T

+
1

T

(
∂

∂T

(
∂U

∂V

)

T

)

V

Next we calculate (∂M/∂V )T :

(
∂M

∂V

)

T

=

(
∂

∂V

(
1

T
×
(
∂U

∂T

)

V

))

T

=
1

T

(
∂

∂V

(
∂U

∂T

)

V

)

T

=
1

T

(
∂

∂T

(
∂U

∂V

)

T

)

V

Subtracting the first expression from the second gives the difference ∆:

∆ =
1

T

(
∂P

∂T

)

V

− P

T 2
− 1

T 2

(
∂U

∂V

)

T
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It will turn out that the dqrev/T is the quantity that we are looking for (entropy).
It is a useful quantity because it is a state function of the system (no path depen-
dency). Note that we have only shown this to hold for ideal gases, a more detailed
consideration will be given later.

Example. Show that the values of the line integral for dqrev/T are identical along
the following paths (monoatomic ideal gas, reversible processes, n = 1):

Closed path 1:
Segment A: (T1, P1, V1) – (T1, P2, V2) isothermal
Segment B: (T1, P1, V1) – (T2, P3, V2) adiabatic
Segment C: (T2, P3, V2) – (T1, P2, V2) constant volume

Closed path 2:
Segment A: (T1, P1, V1) – (T1, P2, V2) isothermal
Segment D: (T1, P1, V1) – (T3, P1, V2) constant pressure
Segment E: (T3, P1, V2) – (T1, P2, V2) constant volume
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Solution. Calculate dqrev/T along each segment. And sum the contributions from
each segment.

Path 1. (“contribution from A + B + C = 0”)

Segment A: The temperature is constant along this path. For an ideal gas, the
internal energy depends only on the temperature (Eq. (2.117)) and therefore dU =
0. Hence along this path (Eq. (2.64)): dqrev = −dw = PdV = (RT/V )dV .
Division of both sides by T and integration gives:

∆S =

q1∫

q2

dqrev

T
= R

V1∫

V2

dV

V
= R ln

(
V1

V2

)

Segment B: Since the change is adiabatic, dqrev = 0 and the corresponding line
integral over dqrev/T is zero as well.

Segment C: Because volume is constant (“constant volume process”), dwrev = 0.
The first law (Eqs. (2.64) and (2.100)) now states that dqrev = dU = CV dT .
Division by T and integration along the segment gives:

∆S =

q2∫

q3

dqrev

T
=

T1∫

T2

CV

T
dT = CV

T1∫

T2

dT

T
= CV ln

(
T1

T2

)

Note that CV is independent of temperature (ideal gas; Eq. (2.119)).
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Summing along the path B + C gives just CV ln(T1/T2) and the contribution along
A is R ln(V2/V1). Thus we have (using Eq. (2.128)):

∮

dS =

∮
dqrev

T
= CV ln

(
T1

T2

)

−R ln

(
V2

V1

)

= 0

Note that an alternative form for Eq. (2.128) is (considering now segment B):

(
T1

T2

)

=

(
V2

V1

)R/CV

Path 2. (“contribution from D + E + A = 0”)

Segment A: The same as in the previous path.

Segment D: At constant pressure dqrev/T = dH/T (Eq. (2.109)). According to Eq.
(2.112), dH/T = (CP /T )dT . Integration of the expression from T1 to T3 gives (CP

is constant for ideal gases; Eq. (2.120)):

∆S =

q3∫

q1

dqrev

T
=

T3∫

T1

CP

T
dT = CP ln

(
T3

T1

)
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Segment E: At constant volume, dw = 0. The first law of thermodynamics then
gives (Eqs. (2.64) and (2.100)):

∆S =

q1∫

q3

dqrev

T
=

U1∫

U3

dU

T
=

T1∫

T3

CV

T
dT = CV ln

(
T1

T3

)

(constant CV assumed)

The total contribution over the closed loop along “D + E + A” segments is:

∮

dS =

∮
dqrev

T
= CP ln

(
T3

T1

)

+ CV ln

(
T1

T3

)

−R ln

(
V2

V1

)

= ln

(
T3

T1

)

× (CP − CV )
︸ ︷︷ ︸

=R (Eqs. (2.119, 2.120))

−R ln

(
V2

V1

)

= R×
(

ln

(
T3

T1

)

− ln

(
V2

V1

))

In order to proceed, we note that the pressure at the end points of segment D is
constant. By using the ideal gas law for both end points, we get:

T3

T1
=

V2

V1

Thus the logarithm terms cancel and the integral is zero.
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3.2 The second law of thermodynamics

Definition of entropy (S):

dS =
dqrev
T

(3.165)

∆S =

∫
dqrev
T

(3.166)

Integration of entropy over closed loops yield zero be-
cause dS is an exact differential (S is a state function):

Rudolph Clausius,

German physicist and

mathematician (1822 -

1888)∮
dqrev
T

=

∮

dS = 0 (3.167)

In general, we have the following inequality (i.e. dq reversible or irreversible):

0 =

∮

dS =

∮
dqrev
T
≥
∮

dq

T
(3.168)

The inequality can also be written in differential form:

dS ≥ dq

T
(3.169)

For an isolated system, the inequality simplifies to:

dS ≥ 0 (3.170)
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The idea behind Clausius inequality (3.170) can be understood by considering the
following example:

dS = dSc + dSh = dq ×
(

1

Tc
− 1

Th

)

≥ 0 (3.171)

Thus we conclude that in presence of spontaneous (irreversible) processes we have
dS > 0. At thermal equilibrium we would have Th = Tc and dS = 0. We will return
to justification of Eq. (3.169) later (non-isolated system).
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The second law of thermodynamics consists of two statements:

1. There is a state function called the entropy S that can be calculated from
dS = dqrev/T .

2. The change in entropy in any process is given by dS ≥ dq/T , where the ’>’
sign applies to a spontaneous (irreversible; dqirrev) process and the equality
for a reversible process (dqrev). In order to calculate ∆S, one must use a
reversible process.

Justification for the Clausis inequality dS ≥ dq
T

(Eq. (3.169)):

1. If the process is reversible then by definition dS =
dqrev

T
.

2. If the process is irreversible, we need to show that dS >
dqirrev

T
. Consider

only PV -work and then the 1st law is dU = dq − PextdV . For a reversible
process this gives: dU = dqrev − PdV and for an irreversible process:
dU = dqirrev − PextdV . Since dU is exact, the previous dU ’s must be equal
(consider integration over short paths): dqrev − PdV = dqirrev − PextdV .
Rearranging gives: dqrev − dqirrev = (P − Pext)dV . If P − Pext > 0 the
system will expand spontaneously and dV > 0. If P − Pext < 0 the system
will contract spontaneously and dV < 0. In both cases dqrev − dqirrev > 0.

Dividing boths sides by T gives
dqrev

T
− dqirrev

T
> 0. By using the definition

of entropy (Eq. (3.165)) we get: dS >
dqirrev

T
.
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Another way to state the 2nd law of thermodynamics: “The entropy increases in
a spontaneous process in an isolated system”. The entropy increases as long as
spontaneous processes proceed. When the system does not change any more, the
entropy will have its maximum value and we have dS = 0. The entropy change tells
us whether a process or chemical reaction can occur spontaneously in an isolated
system. Consider an isolated system (consisting of system and surroundings):

System (at Tsyst) and surroundings (at Tsurr):

dStotal = dSsyst + dSsurr

dqtotal = dqsyst+dqsurr = 0⇒ dqsyst = −dqsurr

The total entropy cannot decrease: dStotal = dSsyst + dSsurr ≥ 0 (Eq. (3.170)).
For the system we have: dSsyst = dq/Tsyst and for the surroundings: dSsurr =
−dq/Tsurr. Therefore we have:

dSsyst ≥
dq

Tsurr
(3.172)

Note: The equal sign case only applies for reversible processes in Eq. (3.172). The
equal sign would also then apply in dStotal = dSsyst + dSsurr = 0 (reversible
process).



119

Based on changes in entropy, we can identify three different cases:

(1) dS > dq/T spontaneous (irreversible) process (3.173)

(2) dS = dq/T reversible process (“nearly equlibrium”)

(3) dS < dq/T impossible process (“forced process”)

For an isolated system (dq = 0), we have:

(1) dS > 0 spontaneous (irreversible) process (3.174)

(2) dS = 0 reversible process (“nearly equilibrium”)

(3) dS < 0 impossible process (“forced process”)

Because S is a state function, it can be integrated between any two states of the
system:

S2∫

S1

dS =

q2∫

q1

dqrev
T

= S2 − S1 = ∆S (3.175)

The integration path in Eq. (3.175) must be reversible. This equation can be
applied to irreversible processes only if a path consisting of reversible segments,
can be constructed. Note that there is no entropy change for a reversible adiabatic
process.
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Example. Is the expansion of a monoatomic ideal gas into a larger volume ther-
modynamically spontaneous? More specifically, consider reversible and isothermal
expansion of an isolated ideal gas (n = 1 mol) initially at 298 K into a volume that
is twice as large as its initial volume.

Solution. Recall from Eq. (2.85) that the reversible work done is (n = 1 mol):

wrev = −
V2∫

V1

PextdV = −
V2∫

V1

PdV = −
V2∫

V1

nRT

V
dV = −nRT ln

(
V2

V1

)

= −RT ln(2)

The internal energy of a monoatomic ideal gas does not depend on volume (Eq.
(2.117)). Thus we have ∆U = qrev + wrev = 0 and further qrev = −wrev =
RT ln(2). Eq. (3.166) with constant T states that ∆S = qrev

T
= R ln(2) > 0 where

we used the fact that V2 = 2 × V1. Because the entropy change is positive, the
change is spontaneous (as we already knew in practice). For the reverse process we
would have ∆S < 0, which means that it does not happen (unless forced).
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Note: The previous problem has nothing to do with minimizing the energy, which is
constant during the process. The process is purely entropy driven and is related to
decrease in “order” at larger volume. By order we mean the arrangement of atoms
or molecules. For example, Sgas > Sliquid > Ssolid.

Example. Calculate the entropy change when argon at 25 ◦C and 1.00 atm in a
container of volume 500 cm3 is allowed to expand to 1000 cm3. Assume that argon
behaves according to the ideal gas law.

Solution. From the ideal gas law we can calculate the amount of substance:

n =
PV

RT
= 0.0204 mol

In previous example we had n = 1. If the same calculation is carried out with n in
place, we have:

∆S = nR ln

(
V2

V1

)

= nR ln(2) = 0.118 J K−1



122
3.3 Entropy changes in reversible processes

Consider a constant temperature (T ) and pressure (P ) process. Now we can apply
both Eqs. (2.109)) and (3.175), respectively:

∆H = qrev and ∆S =
qrev

T
(3.176)

⇒ ∆S =
∆H

T

Examples of constant T and P processes are: vaporization of pure liquid into its
vapor at the equilibrium vapor pressure (P ), sublimation, and structural transitions
in solids.

Example. What is the change in molar entropy of n-hexane when it is vaporized
at its boiling point (68.7 ◦C) under atmospheric pressure (1.01325 bar)? The molar
enthalpy of vaporization is 28850 J mol−1.

Solution. If n-hexane is vaporized into the saturated vapor at the given tem-
perature, the process is reversible and the molar entropy change is given by Eq.
(3.176):

∆S̄ =
∆H̄

T
=

28850 J mol−1

341.8 K
= 84.41 J K−1 mol−1

Other useful special cases:

Constant V : Using Eq. (2.100) we have:
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dS =
dqrev
T

=
CV dT

T
(3.177)

Integration of dS gives:

∆S =

T2∫

T1

CV

T
dT ≈ CV ln

(
T2

T1

)

(3.178)

Constant P : Using Eq. (2.112) we get:

dS =
dqrev
T

=
CP dT

T
(3.179)

∆S =

T2∫

T1

CP

T
dT ≈ CP ln

(
T2

T1

)

(3.180)

Constant T and ideal gas: Following our previous ideal gas calculation, we have:

dS =
dqrev
T

= −dwrev

T
=

PdV

T
(3.181)

∆S =

V2∫

V1

P

T
dV = nR

V2∫

V1

dV

V
= nR ln

(
V2

V1

)

= −nR ln

(
P2

P1

)



124

In terms of standard pressure and entropy (also molar quantities), the previous
expression can be written as:

S̄ = S̄◦ −R ln

(
P

P ◦

)

(◦ = 1 bar standard pressure) (3.182)

Example. Calculate the entropy change when argon gas at 25 ◦C and 1.00 atm in
container of volume 500 cm3 is allowed to expand to 1000 cm3 and is simultaneously
heated to 100 ◦C. Assume that argon behaves according to the ideal gas law.

Solution. The first part of the process was already considered in a previous ex-
ample. The entropy change (∆S) due to volume change was 0.118 J K−1. In the
second step the gas is heated from 298 K to 373 K at constant volume (Eq. (3.178)):

∆S = nC̄V ln

(
T2

T1

)

= (0.0204 mol)×
(

12.48
J

K mol

)

×ln
(
373 K

298 K

)

= 0.057 J K−1

where CV was calculated from the relation C̄P − C̄V = R. The value of C̄P can be
found from the NIST chemistry webbook. Note the handling of the process in two
steps. The total change in entropy is the sum of the two: ∆S = 0.175 J K−1.

Note: Because S is a state function (dS exact), we can choose any convenient path
for integration. In this case it was chosen as: (1) volume change and then (2)
temperature change.
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Example. Half a mole of an ideal gas expands isothermally and reversibly at
298.15 K from a volume of 10 L to a volume of 20 L. (a) What is the change in
the entropy of the gas? (b) How much work is done on the gas? (c) How much
heat is transferred to the surroundings (qsurr)? (d) What is the change in the
entropy of the surroundings? (e) What is the change in the total entropy (system
+ surroundings)?

Solution. (a) Use Eq. (3.181):

∆S = nR ln

(
V2

V1

)

= (0.5 mol)×
(
8.3145 JK−1mol−1

)
ln (2) = 2.88 JK−1

In part (b) we use Eq. (2.63) and note that T is constant:

∆U = wrev + qrev = 0⇒ wrev = −qrev
Now Eq. (3.166) gives:

∆S =
qrev

T
⇒ qrev = T∆S

and further:

wrev = −T∆S = −nRT ln

(
V2

V1

)

= −
(
2.88 JK−1

)
× (298.15 K) = −859 J
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To solve (c), we need qsyst = 859 J as calculated above. The total entropy is
conserved (∆Stot = 0) in a reversible process and thus we have ∆Ssyst = −∆Ssurr

and T∆Ssys = −T∆Ssurr. Using Eq. (3.166) we have qsyst = −qsurr and hence
qsurr = −859 J.

In (d), juse like in (c), the total entropy is conserved and hence ∆Ssurr = −∆Ssyst =
−2.88 J K−1.

In (e), the total entropy is conserved: ∆Stot = 0. The system and its environment
together can be considered as an isolated system. Also note that the process is
reversible.

Example. Consider that the expansion in the preceding example occurs irreversibly
by simply opening a stopcock and allowing the gas to rush into an evacuated bulb
of 10 L volume. (a) What is the change in the entropy of the gas? (b) How much
work is done on the gas? (c) What is qsurr? (d) What is the change in the entropy
of the surroundings? (e) What is the change in the entropy of the system plus the
surroundings?

Solution. (a) The change in entropy is the same as in the previous example.
Entropy is a state function (dS exact) and hence its value does not depend on path.
(b) Expansion into vacuum does not involve PV -work.
(c) Since no work is involved, no changes in heat are involved (the first law).
(d) No heat exchange with the surroundings, thus the entropy of the surroundings
does not change.
(e) ∆Stot = ∆Ssyst + ∆Ssurr = 2.88 J K−1 + 0 J K−1 = 2.88 J K−1. Since
the process is irreversible, we expect that the total entropy would increase (Eq.
(3.172)).
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Summary: Calculation of ∆S for various changes in state

In general, we have to find a reversible path in order to apply Eq. (3.166):

∆S =

∫
dqrev

T

Because S is a state function, the entropy change would then apply for all paths
(also for irreversible paths) that have the same initial and final states. Note that
dqrev is only defined for reversible paths.

Specific cases for one mole of substance:

Constant V : substance(T1, V ) ↔ substance(T2, V )

∆S =
T2∫

T1

CV
T

dT (Eq. (3.178))

If the constant-volume heat capacity CV is independent of T :

∆S = CV ln
(

T2
T1

)

Constant P : substance(T1, P ) ↔ substance(T2, P )

∆S =
T2∫

T1

CP
T

dT (Eq. (3.180))

If the constant-pressure heat capacity CP is independent of T :

∆S = CP ln
(

T2
T1

)
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Phase change at constant T and P : solid(T , P ) ↔ liquid(T , P )
liquid(T , P ) ↔ gas(T , P )
solid(T , P ) ↔ gas(T , P )

∆S = ∆H
T

(Eq. (3.176))
where ∆H is the heat of vaporization,
sublimation or fusion (crystallization).

Ideal gas at constant T : ideal gas(P1, V1, T ) ↔ ideal gas(P2, V2, T )

∆S = R ln

(
V2

V1

)

= −R ln

(
P2

P1

)

(Eq. (3.181))

Remember the correct sign for ∆S: ∆S > 0 when the volume increases.

Mixing of two ideal gas systems at constant T and P :

nA A(T , P ) + nB B(T , P ) = n mixture(T , P )

Here n = nA + nB . The entropy change due to mixing is given by:

∆S = −nR (yA ln (yA) + yB ln (yB)) where yA =
nA

nA + nB
, yB =

nB

nA + nB

Note that the entropy change is always positive (see Eq. (3.186)).
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Example. Calculate the change in entropy of an ideal monatomic gas B in changing
from (P1, T1) to (P2, T2).

Solution. First we have to define a reversible path, for which we know how to
calculate the entropy change (each segment carried out reversibly):

B(T1, P1) → B(T2, P1) → B(T2, P2)

This path has two segments (one where temperature changes and another where
pressure changes). For the first step we have:

∆S = CP

T2∫

T1

dT

T
= CP ln

(
T2

T1

)

= nC̄P ln

(
T2

T1

)

For the second step:

∆S = −nR ln

(
P2

P1

)

By combining the two:

∆S = nR

{

ln

[(
T2

T1

)5/2
]

− ln

(
P2

P1

)}

(note that C̄P =
5

2
R)
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Example. Use the result of the previous example to calculate the molar entropy
change in the following process:

He (298 K, 1 bar) → He (100 K, 10 bar)

Solution. Substitute the values to the equation in the previous examples:

∆S̄ =
5

2
R ln

(
T2

T1

)

−R ln

(
P2

P1

)

=
5

2
ln

(
100 K

298 K

)

−R ln

(
10 bar

1 bar

)

= −41.84 J

K mol

Example. The molar constant-pressure heat capacity of a certain solid at 10 K is
0.43 J K−1 mol−1. What is the molar entropy at that temperature? Assume that
the constant-pressure heat capacity varies as aT 3 where a is a constant.

Solution. Calculate the entropy difference between 0 K and temperature T :

∆S̄ = S̄(T )−S̄(0) =
T∫

0

C̄P

T
dT =

T∫

0

aT 3

T
dT = a

T∫

0

T 2dT =
a

3
T 3 =

C̄P

3
(C̄P = aT 3)

⇒ S̄(T ) = S̄(0) +
C̄P

3
⇒ S̄(T ) = S̄(0) + 0.14 J K−1 mol−1
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3.4 Entropy changes in irreversible processes

To obtain the change in entropy in an irreversible process we have to calculate ∆S
along a reversible path between the initial state and the final state.

Example. Calculate the entropy change when supercooled water at −10 ◦C freezes.

Solution. The process is clearly irreversible because you can not simply carry it out
slowly. Any attempt to unfreeze the liquid would require, for example, an increase
in temperature. This would correspond to another choice of path.

Because the process is irreversible, we have to find another path that consists of
reversible segments:

∆H̄ = −6004 J mol−1, C̄liq = 75.3 J K−1 mol−1, C̄ice = 36.8 J K−1 mol−1.
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The system entropy is obtained as a sum over the three segments (the heat capacities
correspond to constant-pressure values; CP ):

∆S̄syst =

273 K∫

263 K

C̄liq

T
dT +

∆H̄

T
+

263 K∫

273 K

C̄ice

T
dT =

(
75.3 J K−1 mol−1

)
(3.183)

× ln

(
273 K

263 K

)

+
−6004 J mol−1

273 K
+
(
36.8 J K−1 mol−1

)
× ln

(
263 K

273 K

)

= −20.54 J K−1 mol−1

According to the statistical interpretation of thermodynamics, the decrease in en-
tropy here corresponds to increased order in ice (i.e., molecules are more rigid in
the solid material than in the liquid).

Example. What is the change in entropy of the surroundings (the glass bottle plus
a large heat bath at −10 ◦C) in the previous example? What happens to the total
entropy?

Solution. The process is (the gray area is the heat bath):
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Because the surroundings (bottle plus bath) are large, their temperature does not
change remarkably during the heat transfer from the system. Heat transfer by an
infinitely small amount at constant temperature from the system to the surroundings
is a reversible process (i.e. it can be done the other way around as well). Thus,
for the surroundings, a reversible path is the direct path (#2 in previous diagram):
H2O (l, −10 ◦C) → H2O (s, −10 ◦C).

We use the Eq. (3.176) to calculate the change in the entropy for the surroundings:

∆S̄surr =
qsurr

T
=
−qsys
T

=
−∆H̄263 K

T

where we have to calculate the heat of fusion at 263 K for the system. In the
previous example it was given at 273 K. To do this, we use the same idea as in the
Eq. (2.140):

∆H̄263 K =

273 K∫

263 K

C̄liqdT +∆H̄273 K +

263 K∫

273 K

C̄icedT

= C̄liq∆T +∆H̄273 K−C̄ice∆T
︸ ︷︷ ︸

limits!

=
(
75.3 J K−1mol−1

)
× (10 K)

−6004 J mol−1 −
(
36.8 J K−1mol−1

)
× (10 K) = −5619 J mol−1
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Now we can calculate the entropy change (Eq. (3.176)):

∆S̄surr =
5619 J mol−1

263 K
= 21.37 J K−1mol−1

The total entropy change (system + surroundings) is the the sum of the two:

∆Stotal = ∆Ssyst +∆Ssurr =
(
−20.54 J K−1mol−1

)
+
(
21.37 J K−1mol−1

)

= 0.83 J K−1mol−1 > 0

Notes:

◮ The total change is positive, indicating a spontaneous (irreversible) process.
This is in line with Eq. (3.173).

◮ The non-zero ∆S arises from the differences in reversible paths (#1 and #2)
for the system and the bath. For the system (water/ice) the path #1 is
reversible and for the bath path #2 is reversible. Only reversible paths can
be used in calculating entropies. Along path #2 the temperature is constant.

Trouton’s rule: A wide range of liquids have approximately the same entropy of
vaporization (ca. 85 J K−1 mol−1). This is an empirical result.
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3.5 Entropy of mixing ideal gases

Consider mixing of two species of ideal gas:

If the wall is just removed, we have clearly an irreversible process. However, in
order to calculate change in entropy, we need a reversible path (V = V1 + V2):

1. Isothermal reversible expansion of each gas to the final volume V .

2. Reversible mixing of gases at constant volume V .

Segment 1 is understandable, but how can we carry out segment 2 reversibly?

Consider step 2 first (i.e. both gases have been already expanded to V ):



136

Permeable membranes overlap. The non-
permeable membrane is all the way to the
right.

The non-permeable membrane is moved to-
wards the left end. At the same time the “Gas
1” permeable membrane is moved towards the
left end. The “Gas 2” permeable membrane is
kept at the center.

The “Gas 1” permeable membrane is finally
moved all the way to the left. The non-
permeable membrane has been moved to the
center. “Gas 2” and non-permeable mem-
branes are on top of each other.

Dashed line = Membrane permeable to “Gas 1” This process is reversible.

Dotted line = Membrane permeable to “Gas 2” It can proceed in both
Continuous line = Non-permeable membrane directions.
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Is there any PV -work involved in (frictionless) movement of the membranes?

No, consider the following figure:

When the two membranes move to the left, there are equal pressures on both sides:
Gas 1 (P1) + Gas 2 (P2) and Gases 1 and 2 (P1 + P2). Both pressure and volume
are constant during the process and hence no work is done: w = 0.
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Since we are dealing with ideal gases at constant temperature, the change in internal
energy (∆U) is zero. Recall that for ideal gases the internal energy depends only on
temperature (see Eq. (2.117)). Now the first law of thermodynamics (∆U = q+w)
yields q = −w = 0 (w = 0 from the previous page). No changes in heat also means
that there is no change in entropy and hence, for this segment, ∆S = 0.

We still need to consider the first segment (step 1). Now Eq. (3.181) can be applied:

For gas 1: ∆S1 = −n1R ln

(
V1

V

)

= −n1R ln

(
n1

n1 + n2

)

= −n1R ln (y1) (3.184)

For gas 2: ∆S2 = −n2R ln

(
V2

V

)

= −n2R ln

(
n2

n1 + n2

)

= −n2R ln (y2) (3.185)

The total change in entropy due to mixing is given as a sum:

∆Smixing = −n1R ln (y1)− n2R ln (y2) (3.186)

or, in general:

∆Smixing = −R
Ns∑

i=1

ni ln (yi) > 0 (3.187)
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3.6 Entropy and statistical probability

Consider again Joule’s experiment (both bulbs with equal volume):

With just one gas molecule, after opening the stopcock, the molecule can be in
either bulb. Thus the number of equally probable arrangements is 2. With two gas
molecules, they can be located both on the left, one on each side (two possibilities)
and both on the right. This gives 4 equally probable arrangements. For n molecules
the number of equally probable arrangements is:

# of molecules Number of possible arrangements
2 22 = 4
3 23 = 8
4 24 = 16
... ...
n 2n = exp (ln (2n))
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For one mole of molecules, N = 6.022 × 1023 (n = 1). The number of equally
probably arrangements is:

26.022×1023 = e4.174×1023 (3.188)

Boltzmann’s postulate:
S = k ln (Ω) (3.189)

where k is Boltzmann’s constant (= R × NA) and Ω is the number of equally
probable microscopic arrangements for the system. The numerical value for k is
1.38066× 10−23 J K−1. For changes in entropy the equation has the form:

∆S = S′ − S = k ln

(
Ω′

Ω

)

(3.190)

Consider now the Joule’s experiment. In the initial state all molecules are in the
left bulb and there is only one possible arrangement, Ω = 1. After opening the
valve and reaching the equilibrium the number of possible arrangments is given by
Eq. (3.188):

Ω′ = e4.174×1023 (final state) and Ω = 1 (initial state)

∆S = k ln

(
Ω′

Ω

)

=
(
1.381× 10−23 J K−1

)
×
(
4.174× 1023

)
= 5.76 J K−1

This is positive because entropy increases when volume increases. Note that if we
chose two different volumes for the bulbs, then Ω ∝ V1 and Ω′ ∝ V2 and we would

recover the ln
(

V1
V2

)

form that we found earlier.
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If we compare this result with the one we calculated earlier (“expansion of ideal
gas”), we note that they are identical (earlier we obtained R ln(2) ≈ 5.76). This
gives strong support for Boltzmann’s postulate (but does not prove that it is cor-
rect).

Because of Eq. (3.169), ∆S ≥ q/T , the entropy is a measure of heat flow between
the system and the surroundings. When heat is absorbed by the system from
its surroundings, q is positive, and the entropy of the system increases. On the
microscopic scale, the entropy is a measure of the dispersal of energy among the
possible microstates of molecules in a system (“degrees of freedom”).

Notes:

◮ Since thermodynamics is a statistical theory, it works only when we have a
large number of atoms/molecules.

◮ Some processes happen spontaneously even though they do not reduce the
energy of a system. They are driven purely by favorable change in entropy!
From the statistical point of view, it means that states with most degrees of
freedom are favored.
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3.7 General expression for evaluating entropy

The entropy of a substance at any desired temperature relative to its entropy at
absolute zero may be obtained by integrating dq/T from absolute zero to the desired
temperature:

S̄◦
T−S̄◦

0 K =

Tm∫

0 K

C̄◦
P (s)

T
dT+

∆H◦
fus

Tm
+

Tb∫

Tm

C̄◦
P (l)

T
dT+

∆H◦
vap

Tb
+

T∫

Tb

C̄◦
P (g)

T
dT (3.191)

where Tm is the melting temperature and Tb is the boiling temperature. If tem-
perature T is smaller than Tm or Tb, the corresponding terms are omitted. The
enthalpies have the following notation: fus (fusion; crystallization/melting) and
vap (vaporization). Note that all the heat capacities in this expression depend on
temperature:
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Entropy of sulfur dioxide at different temperatures (Tm = 197.64 K, Tb = 263.08
K, ∆H̄fus = 7402 J mol−1, ∆H̄vap = 24937 J mol−1):

T (K) Method of calculation ∆S̄◦ (J K−1 mol−1)

0 – 15 Debye function (C̄P ∝ T 3) 1.26
15 – 197.64 Graphical, solid 84.18
197.64 Fusion, ∆H̄fus/Tm 37.45
197.64 – 263.08 Graphical, liquid 24.94
263.08 Vaporization, ∆H̄vap/Tb 94.79
263.08 – 298.15 From C̄P of gas 5.23

S̄◦(298.15 K)− S̄◦(0 K) = 247.85
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3.8 Third law of thermodynamics

The third law, for all molecules:

lim
T→0

∆rS = 0 (3.192)

Planck’s contribution, for any pure substance:

lim
T→0

S = 0 (3.193)

Consider a simple phase change in Eq. (3.192):

Sulfur(rhombic crystal) ↔ Sulfur(monoclinic crystal)

Experimental determination of
heat capacities and Eq. (3.191)
show that:

∆rS → 0

On the right: experimentally
determined entropies for the
two crystal forms of sulfur are
shown.
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Experimental details for the phase change in solid sulfur:

◮ Rhombic form of sulfur is the stable form below the phase transition
temperature (368.5 K).

◮ Monoclinic sulfur can exist below this temperature when supercooled.

Experimental methods for determining ∆rS:

Method 1: Determine constant-pressure heat capacities (CP (T )) for both forms of
the crystal structures. Use Eq. (3.191):

S̄rho
368.5 K − S̄rho

0 K =

368.5 K∫

0 K

C̄rho
P

T
dT (3.194)

S̄mon
368.5 K − S̄mon

0 K =

368.5 K∫

0 K

C̄mon
P

T
dT

If we assume that both rhombic and monoclinic forms have the same S0 K then
subtraction of the equations from each other gives the entropy difference between
the two forms at 368.5 K. The result from such calculation gives ∆S(rho, mon) at
368.5 K, which is 1.09 J K−1 mol−1.
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Method 2: Determine heats of combustion for both crystal forms at 368.5 K and
calculate the enthalpy difference between the two forms by subtracting the two
values from each other. Then use Eq. (3.176):

∆S(rho,mon) =
∆H

T
=

401 J mol−1

368.5 K
= 1.09 J K−1 mol−1 (3.195)

Both methods give consistent results. Note that we used the fact that both species
had identical entropies at 0 K. Statistical thermodynamics says that this value
should be zero.

Notes:

1. What is supercooling? A liquid below its melting point will crystallize in
presence of a seed crystal or nucleus around which a crystal structure can
form. However, lacking any such nucleus, the liquid phase can be
maintained all the way down to the temperature at which crystal
homogeneous nucleation occurs. For example, pure water can be cooled to
almost 231 K (melting point 273 K) when cooled very fast, about at rate 1
million K / second. Rain contains sometimes supercooled water, which
freezes immediately upon touching a surface.

2. CP goes to zero when temperature approaches 0 K.

3. According to the third law of thermodynamics, it is impossible to reach 0 K.
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Other methods for determining entropy:

◮ Measurement of equilibrium constant for a chemical reaction over a range of
temperatures yields both ∆H◦ and ∆S◦.

◮ Spectrophotometric measurements

Violations of the third law?

In most cases theory and experiment agree (298.15 K and 1 bar; gas):

Gas S◦ (Calc.) / J K−1 mol−1 S◦ (Exp.) / J K−1 mol−1

CO2 213.8 213.7
NH3 192.8 192.6
NO2 240.1 240.2
CH4 186.3 186.3
C2H2 200.9 200.9
C2H4 219.6 219.6
C2H6 229.6 229.6
N2O 215.1 219.9 (∆ = 4.8)
CO 193.5 197.7 (∆ = 4.2)

This suggests that there is some kind of residual entropy in the system? When
comparing values obtained using heat capacities and spectroscopic data, similar
discrepancies can be noticed.
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For both CO and N2O, the residual entropy can be explained by imperfect crystal
structures at 0 K, which results in approximately a constant offset at elevated
temperatures as well (see previous table). Crystal imperfections contribute to the
total entropy and hence it does not appraoch zero even at 0 K. Consider the following
molecular arrangements in solid N2O:

... NNO · · ·ONN · · ·NNO · · ·NNO · · ·ONN ...

In other words, the molecule can orient in many different ways in the crystal (O · · ·
O, O · · · N, N · · · N). If we consider that N2O gas would consist of two different
species NNO and ONN with equal amounts and calculate the entropy of mixing
these two species, we get (Eq. (3.186) for per mole quantity, y1 = 1/2, y2 = 1/2):

∆mixS̄ = −n1R ln (y1)− n2R ln (y2) = −
1

2
R ln

(
1

2

)

− 1

2
R ln

(
1

2

)

(3.196)

= 5.8 J K−1mol−1

This is approximately the difference between the experimental and calculated re-
sults. If we could prepare a “perfect” crystal somehow, this correction would not
be needed. For CO, one needs to consider two “different” molecules CO and OC.
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The following two sources of randomness in crystals at 0 K are not considered in
calculating the entropies for chemical purposes:

1. Possible isotopic mixtures of species. This is ignored because both the
reactants and the products contain the same mixture isotopes.

2. Spin degeneracy at 0 K is ignored. Again the same degeneracy exists in both
the reactants and the products. Spin is conserved in chemical reactions.

Notes:

1. The entropy of H+ (at chemical equilibrium) in water has been arbitrarily
assigned the value of zero.

2. When comparing standard entropy values from various sources, it is
important to be aware of the standard pressure used.

3. In order to see why NNO vs. ONN (or CO vs. OC) configurations result in
residual entropy, one should draw the crystal structure and look at the
possible orientations there.

4. H2O is another system that has significant amount of residual entropy.
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3.9 Heat engines

Heat engine is an engine that uses heat to generate mechanical work:

Carnot heat engine:

1. Isothermal expansion

2. Adiabatic expansion

3. Isothermal compression

4. Adiabatic compression
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Consider the P − V plot of the Carnot heat engine (the four cycles are denoted by
A, B, C, D, all processes are reversible):

1. A → B:

◮ Heat q1 is transferred from the high-temperature (isothermal at
temperature T1) reservoir to the cylinder

◮ Isothermal expansion of the gas pushes the piston towards larger
cylinder volume

◮ The moving piston does work on the surroundings (w1)
◮ ∆U1 = q1 + w1

2. B → C:

◮ Adiabatic expansion of the gas
◮ The expansion continues until temperature of the gas drops from

T1 to T2
◮ During this stage the piston does work on the surroundings (w2)
◮ ∆U2 = w2

3. C → D:
◮ Isothermal compression of the gas
◮ The surroundings does work on the piston (w3)
◮ Heat flows out to the low-temperature reservoir (q2)
◮ ∆U3 = q2 + w3

4. D → A:
◮ Adiabatic compression of the gas
◮ The surroundings do work on the piston (w4)
◮ No heat exchange
◮ A steam engine with two stages
◮ ∆U4 = w4
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Because the internal energy of the system is a state function, the total change in
internal energy over a closed path must be zero:

∆Ucycle =





qin
︷︸︸︷
q1 +

qout
︷︸︸︷
q2





︸ ︷︷ ︸

≡qcycle

+(w1 + w2 + w3 + w4)
︸ ︷︷ ︸

≡wcycle

(3.197)

⇒ −wcycle = qcycle = qin + qout (3.198)

⇒
∣
∣wcycle

∣
∣ = |qin| − |qout| (qin > 0 and qout < 0) (3.199)

In order to find out the efficiency of the heat engine, we define the efficiency pa-
rameter ǫ:

ǫ =

∣
∣wcycle

∣
∣

|qin|
=
|qin| − |qout|
|qin|

= 1− |qout||qin|
(3.200)

Note that 0 < ǫ < 1 and larger value of ǫ correspond to better efficiency.

Next we apply the concept of entropy to simplify Eq. (3.200). Because the overall
cycle is reversible, the total entropy change over the closed cycle is zero. Only
two segments along the path deal with heat exchange (A-B and C-D). For these
segments Eq. (3.166) gives (Tin and Tout correspond to T1 and T2, respectively):

∆Scycle =
|qin|
Th
− |qout|

Tc
= 0⇒ |qin|

Th
=
|qout|
Tc

(3.201)

ǫ = 1− Tc

Th
(3.202)
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Thus the ratio of Tc/Th must be made as small as possible to achieve high efficiency.
Typically Tc would be room temperature, and therefore Th should simply be made
as high as possible.



Chapter 4: Fundamental equations of thermodynamics

“Legendre transformation allows definition of useful thermodynamic potentials:
Helmholtz and Gibbs potentials”
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4.1 Fundamental equation for the internal energy

Let’s first recall what we have learned so far:

The first law of thermodynamics (Eq. (2.64)): dU = dq + dw

The second law of thermodynamics (Eq. (3.169)): dS ≥ dq
T

Consider a closed system with only reversible PV -work: dw = −PdV and dS = dq
T

Combining this with the 1st and 2nd laws gives: dU = TdS − PdV .

When chemical potential is included above, we get the gener-
alized form for dU :

dU = TdS − PdV +

Ns∑

i=1

µidni

︸ ︷︷ ︸

“chemical work”

(4.203)

where Ns is the number of chemical species, µi is the chemical
potential and ni is the amount of substance of species i.

J. Willard Gibbs,

American physicist

(1839 - 1903)
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Note that U depends on variables S, V and {ni}. These variables are called the
natural variables of U . The total differential of U can be written as (cf. Eq.
(1.45)):

dU =

(
∂U

∂S

)

V,{ni}

dS +

(
∂U

∂V

)

S,{ni}

dV +

Ns∑

i=1

(
∂U

∂ni

)

S,V,{nj}j 6=i

dni (4.204)

If this is compared with Eq. (4.203), we can see that partial derivatives in front of
dS, dV and dni must be equal to T , −P and µi, respectively:

T =

(
∂U

∂S

)

V,{ni}

, P = −
(
∂U

∂V

)

S,{ni}

, µi =

(
∂U

∂ni

)

S,V,{nj}j 6=i

(4.205)

Thus if we know the partial derivatives of the internal energy with respect to S, V
and ni, we can calculate T , P and µi using Eq. (4.205).

If we allow the process to be irreversible, we have to consider the inequality in the
second law and keep in mind that the pressure now is really Pext:

dU ≤ TdS − PextdV +

Ns∑

i=1

µidni (4.206)

If the entropy, volume and amounts of substance are constant, we have:
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(dU)S,V,{ni}
≤ 0 (4.207)

This is the criterion for spontaneous change and equilibrium at constant S, V and
ni. At equilibrium, U(S, V, {ni}) must be at minimum (i.e., dU = 0).

If T , P , and µi are constant, Eq. (4.203) can be integrated:

U = TS − PV +

Ns∑

i=1

µini (4.208)

Note: It is not convenient to use S and V as variables because they cannot be easily
controlled during chemical processes.
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4.2 Definitions of additional thermodynamic potentials
using Legendre transformations

What is Legendre transformation? Consider the following differential:

df(x, y) =

(
∂f(x, y)

∂x

)

dx+

(
∂f(x, y)

∂y

)

dy ≡ u(x, y)dx+ v(x, y)dy

Change the differentials from (dx,dy) to (du,dy) with the following transformation:

g ≡ f − ux

dg = df − udx− xdu = udx+ vdy − udx− xdu = vdy − xdu

where x = − ∂g
∂u

and v = ∂g
∂y

. x and u are conjugate

variables.

In a nutshell:

“Transform the original differential in such a way
that the new differential depends on the conjugate
variables”

Adrien-Marie Legendre,

French mathematician

(1752 - 1833)
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Next, we will apply Legendre transformation to internal energy (ignore chemical
potential for now):

d U
︸︷︷︸

“f”

= −P
︸︷︷︸

“u”

dV
︸︷︷︸

“dx”

+ T
︸︷︷︸

“v”

dS
︸︷︷︸

“dy”

H
︸︷︷︸

“g”

= U
︸︷︷︸

“f”

− (−PV )
︸ ︷︷ ︸

“u×x”

= U + PV

dH
︸︷︷︸

“dg”

= T
︸︷︷︸

“v”

dS
︸︷︷︸

“dy”

−




 V
︸︷︷︸

“x”

× (−dP )
︸ ︷︷ ︸

“du”




 = TdS + V dP

Now we have a new differential (enthalpy) dH with new natural variables S and P .
Note that the original differential dU had S and V as natural variables. Adding
chemical potential does not change this result since we were not operating on the
corresponding conjugate variables (µi and ni):

dH = TdS + V dP +

Ns∑

i=1

µidni (4.209)

Recall that the total differential of H is:

dH =

(
∂H

∂S

)

P,{ni}

dS +

(
∂H

∂P

)

S,{ni}

dP +

Ns∑

i=1

(
∂H

∂ni

)

P,V,{nj}j 6=i

dni (4.210)
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By comparing the terms the same way as we did for dU , we get the following
relations:

T =

(
∂H

∂S

)

P,{ni}

, V =

(
∂H

∂P

)

S,{ni}

, µi =

(
∂H

∂ni

)

S,P,{nj}j 6=i

(4.211)

Thus, if we can determine the partial derivatives of H with respect to S, P and
ni, we can always obtain T , V and µi from Eq. (4.211). A system under constant
S, P , and ni combined with Eq. (4.209) and exactly the same reasoning as in Eq.
(4.207) gives:

(dH)S,P,{ni}
≤ 0 (4.212)

A process occurs spontaneously at constant S, P and {ni} if the enthalpy decreases.

Furthermore, integration of Eq. (4.209) under constant T , P and {µi} results in:

H = TS +

Ns∑

i=1

µini (4.213)

Note that this yields Eq. (4.208) when setting H = U + PV .
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Previously we established that U and H are connected to each other via Legendre
transformation with conjugate variables V and P . It is easier to control pressure
than volume and therefore H is more convenient to use in practice.

How about the other conjugate variable pair (T , S)?

Yes, it is more convenient to use temperature rather than entropy. Since (V , P )
pair offers two choices (U and H) and (T , S) another two, we have a total of four
different possibilities:

Quantity Natural variables Energy Differential (*)
Internal energy U S, V, {ni} U dU = TdS − PdV
Enthalpy H S,P, {ni} H = U + PV dH = TdS + V dP
Helmholtz energy A T, V, {ni} A = U − TS dA = −SdT − PdV
Gibbs energy G T, P, {ni} G = H − TS dG = −SdT + V dP

(*) chemical potential should be added to each differential. We are not considering
Legendre transformation with respect to ni and µi. The differential can also be
derived from the given energy expression by considering the total differential.

The last form is most useful in chemical applications since T and P can be controlled
(i.e. they can be held constant).
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Expressions for the Helmholtz “free energy” (A):

dA = −SdT − PdV +

Ns∑

i=1

µidni (4.214)

S = −
(
∂A

∂T

)

V,{ni}

(4.215)

P = −
(
∂A

∂V

)

T,{ni}

(4.216)

µi =

(
∂A

∂ni

)

T,V,{nj}j 6=i

(4.217)

(dA)T,V,{nj}j 6=i
≤ 0 (4.218)

A = −PV +

Ns∑

i=1

µini (4.219)

Hermann von Helmholtz,

German physicist (1821 -

1894)

At constant T , a change in the Helmholtz energy is given by ∆A = ∆U−T∆S. This
gives the amount of internal energy that is “free” for doing work in a spontaneous
process.

Note: Helmholtz energy is less useful in chemistry than the Gibbs energy because
processes and reactions are more often carried out at constant pressure rather than
constant volume.
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The corresponding expressions for the Gibbs energy (G) are:

dG = −SdT + V dP +

Ns∑

i=1

µidni

(4.220)

S = −
(
∂G

∂T

)

P,{ni}

(4.221)

V =

(
∂G

∂P

)

T,{ni}

(4.222)

µi =

(
∂G

∂ni

)

T,P,{ni}

(4.223)

(dG)T,P,{ni}
≤ 0 (4.224)

G =

Ns∑

i=1

µini(const. T, P, µi) (4.225)

At constant T and P , a change in the Gibbs energy is given by: ∆G = ∆U+P∆V −
T∆S. In another words, it gives the maximum amount of internal energy that is
available for doing non-expansion work in a spontaneous process.

The related Maxwell equations (differentiation of the previous Eqs.):

(
∂S

∂P

)

T,{ni}

= −
(

∂2G

∂P∂T

)

T,{ni}

= −
(

∂2G

∂T∂P

)

P,{ni}

= −
(
∂V

∂T

)

P,{ni}

(4.226)

(
∂S

∂ni

)

P,T,{nj}j 6=i

= −
(

∂2G

∂ni∂T

)

P,T,{nj}j 6=i

= −
(

∂2G

∂T∂ni

)

P,{ni}

= −
(
∂µi

∂T

)

P,{ni}

(4.227)
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(
∂V

∂ni

)

P,T,{nj}j 6=i

=

(
∂2G

∂ni∂P

)

P,T,{nj}j 6=i

=

(
∂2G

∂P∂ni

)

T,{ni}

=

(
∂µi

∂P

)

T,{ni}

(4.228)
Note: Since G is a well behaving, the order of differentiation may changed.

Example. Demonstrate the fact that if a thermodynamic potential is known as a
function of its natural variables, we can calculate all of the thermodynamic proper-
ties of the system.

Solution. We choose to show this for the Gibbs energy (G). So we assume that
the value of G is known as a function of its natural variables (T, P, {ni}). In this
example we will consider only single species, so that the chemical potential sum
vanishes. The entropy and volume of the system can be calculated using (Eqs.
(4.221) and (4.222)):

S = −
(
∂G

∂T

)

P

and V =

(
∂G

∂P

)

T

Now using the equations given in the previous table, we have:

U = G− PV + TS = G− P

(
∂G

∂P

)

T

− T

(
∂G

∂T

)

P

H = G+ TS = G− T

(
∂G

∂T

)

P

and A = G− PV = G− P

(
∂G

∂P

)

T

These expressions relate U , H, A, and G to each other.
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Example. Show that the Gibbs energy gives a criterion for spontaneous change at
constant T = Tsys = Tsurr and P .

Solution. We need to show that dGsys ≤ 0⇔ dStot ≥ 0. First we calculate dGsys

by noting that G = H − TS:

dGsys = d (Hsys − TSsys) = dHsys − d (TSsys) = dHsys − SsysdT
︸ ︷︷ ︸

=0

−TdSsys

= dqsys − TdSsys = −dqsurr − TdSsys ≤ 0

⇔ dqsurr

T
︸ ︷︷ ︸

=dSsurr

+dSsys = dStot ≥ 0

Thus for spontaneous (irreversible) changes, the Gibbs energy will always decrease
with the equal sign applying only to reversible processes. Note that there is no need
to consider the surroundings explicitly when predicting spontaneity using Gibbs
energy whereas the calculation using entropy must consider both the system and
surroundings explicitly.

Note: Although the above criteria show whether a certain change is spontaneous,
it does not necessarily follow that the change will take place with an appreciable
speed.



166

When other than PV -work occurs in the system, it contributes a term to the fun-
damental equation for the internal energy (Eq. (2.95)). They can be included in
the Gibbs energy:

dG = −SdT + V dP +

Ns∑

i=1

µidni + FdL+ γdAS (4.229)

where F is the force of extension, L is the length, γ is the surface tension and AS is
the surface area. Variables (F and L) and (γ and AS) are conjugate variables and:

F = −
(
∂G

∂L

)

T,P,{ni},AS

(4.230)

γ =

(
∂G

∂AS

)

T,P,{ni},L

(4.231)

What is the meaning of the Helmholtz and Gibbs energies in presence of non-PV
work?

1. Helmholtz energy. Consider the first law of thermodynamics (Eq. (2.64)):
dU = dq + dw. Using Eq. (3.172) gives:

− dU + TdS ≥ − dw (4.232)

At constant temperature (dT = 0) we can write:

− d (U − TS) ≥ − dw (4.233)
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This implies that:

(dA)T ≤ dw (4.234)

where A is the Helmholtz energy. Thus a change in the Helmholtz energy gives an
upper bound for the work that can be done on the surroundings. In real processes
the amount work that can be done is less than |∆A|. In this case both sides of Eq.
(4.234) are negative (dw < 0 and (dA)T < 0); i.e. when the system does work on
the surroundings (i.e. |(dA)T | ≥ |dw|).

Note: dw now contains both PV and non-PV work.

2. Gibbs energy. The Gibbs energy is especially useful when non-PV work is in-
volved. When PV and non-PV work are separated, the first law of thermodynamics
(Eq. (2.64)) can be written:

dU = dq − PextdV + dwnonPV (4.235)

With the inequality (Eq. (3.172)) TdS ≥ dq we can write:

− dU − PextdV + TdS ≥ −dwnonPV (4.236)

At constant T and P (= Pext), we have:

− d (U + PV − TS) ≥ −dwnonPV (4.237)

(dG)T,P ≤ dwnonPV (4.238)
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Notes:

1. For a reversible process at constant T and P the change in Gibbs energy is
equal to the non-PV work done on the system by the surroundings.

2. Eq. (4.238) states that a change in the Gibbs energy at constant T and P
gives an upper bound for the non-PV work that the system can do on its
surroundings. Remember that in this case dG and dwnonPV are negative.

3. When work is done on the system, the Gibbs energy increases. When work
is done by the system, the Gibbs energy decreases.
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4.3 Effect of temperature on the Gibbs energy

How does G change as a function of temperature? Eq. (4.221) states that:

(
∂G

∂T

)

P,{ni}

= −S ≤ 0

Since the derivative is zero or negative, the Gibbs energy decreases as T increases
given that P and {ni} are constant.

What is the relationship between H and G in terms of temperature?

Previously we have established that G = H − TS. If we replace S with the above
derivative:

G = H − TS = H + T

(
∂G

∂T

)

P,{ni}

(4.239)

This equation can be modified by using the following expression (G on the right
hand side):

(
∂(G/T )

∂T

)

P,{ni}

= − G

T 2
+

1

T

(
∂G

∂T

)

P,{ni}

(4.240)

Substitution of Eq. (4.239) into this equation gives (“the Gibbs-Helmholtz equa-
tion”):

H = −T 2

(
∂(G/T )

∂T

)

P,{ni}

(4.241)
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When looking at differences in the Gibbs energies and enthalpies, this becomes:

∆H = −T 2

(
∂(∆G/T )

∂T

)

P,{ni}

(4.242)

Notes:

1. If ∆G can be determined as a function of temperature, we can obtain ∆H
using Eq. (4.242).

2. If ∆H is independent of temperature and ∆G is known at one temperature,
it is possible to obtain ∆G at other temperatures with Eq. (4.242).
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4.4 Effect of pressure on the Gibbs energy

How does G change as a function of pressure?

First Recall Eq. (4.222):
(

∂G
∂P

)

T,{ni}
= V .

Integration of this equation gives:

G2∫

G1

dG =

P2∫

P1

V dP ⇒ G2 = G1 +

P2∫

P1

V
︸︷︷︸

>0

dP (4.243)

Thus the Gibbs energy always increases with the increasing pressure when T and
{ni} are constant.

For liquids and solids volume (V ) is approx. independent of pressure (P ) and thus:

G2 = G1 + V (P2 − P1) or ∆G = V∆P (4.244)

For ideal gases (PV = nRT ), we can write:

G2 = G1 + nRT ln

(
P2

P1

)

or ∆G = nRT ln

(
P2

P1

)

(4.245)

Setting P2 = P, P1 = P ◦, G2 = G and G1 = G◦, we get:

G = G◦ + nRT ln

(
P

P ◦

)

(4.246)
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Example. Given the expression for the molar Gibbs energy (Eq. (4.246)) and
considering a monatomic ideal gas, derive the corresponding expression for the
following thermodynamic properties: V, U,H, S and A at constant T .

Solution. The molar Gibbs energy is given by Eq. (4.246) with over bars:

Ḡ = Ḡ◦ +RT ln

(
P

P ◦

)

We need to find a similar -type expression for the above thermodynamic properties.
The form should be: X = X◦ +“possible pressure correction”. For an ideal gas we
have:

P V̄ = RT ⇒ V̄ =
RT

P

Based on Eq. (2.117), the internal energy of an ideal gas does not depend on volume
or pressure but only on temperature:

Ū = Ū◦

Recall that enthalpy is defined as H = U + PV . For an ideal gas PV = constant
= nRT , thus:

H̄ = Ū + P V̄ = Ū◦ +RT = H̄◦
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Eq. (3.182) for the molar entropy states that: S̄ = S̄◦ −R ln
(

P
P◦

)

.

For the Helmholtz energy we have:

Ā◦ = Ḡ◦ − P V̄ = Ḡ◦ −RT

⇒ Ā = Ḡ− P V̄ = Ḡ−RT = Ḡ◦ −RT
︸ ︷︷ ︸

=Ā◦

+RT ln

(
P

P ◦

)

= Ā◦ +RT ln

(
P

P ◦

)

Example. An ideal gas at 27 ◦C expands isothermally and reversibly from 10.00
to 1.000 bar against a pressure that is gradually reduced. Calculate q per mole and
w per mole and each of the thermodynamic quantities ∆Ḡ, ∆Ū , ∆H̄, ∆S̄ and ∆Ā.

Solution. Since the process is reversible & isothermal and the gas is ideal, we have:

dw = −PextdV̄ = −PdV̄ ⇒ w = −RT ln

(
V̄2

V̄1

)

= −RT ln

(
P1

P2

)

= −
(
8.3145 J K−1 mol−1

)
× (300.15 K)× ln

(
10.00 bar

1.000 bar

)

= −5746 J mol−1
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Recall that Helmholtz energy gives the maximum amount of work that the system
can do in a reversible process. Here the work and Helmholtz energy should be equal.
Formally this can be seen integrating Eq. (4.214) at constant T :

dA = −S dT
︸︷︷︸

≡0

−PdV = −PdV = dw ⇒ ∆Ā = w = −5746 J mol−1

The internal energy of an ideal gas depends only on temperature and hence:

∆Ū = 0⇒ q = ∆Ū − w = 5746 J mol−1

Likewise, the enthalpy of an ideal gas depends only on temperature:

∆H̄ = ∆Ū +∆
(
P V̄
)
= ∆Ū
︸︷︷︸

≡0

+∆(RT )
︸ ︷︷ ︸

≡0

= 0

To get the change in the Gibbs energy (∆Ḡ), we integrate Eq. (4.222):

∆Ḡ =

G2∫

G1

dG =

P2∫

P1

V̄ dP =

P2∫

P1

RT

P
dP = RT ln

(
P2

P1

)

=
(
8.3145 J K−1 mol−1

)
× (300.15 K)× ln

(
1.000 bar

10.00 bar

)

= −5746 J mol−1
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Entropy for a reversible process at constant T can be calculated using Eq. (3.166):

∆S̄ =
qrev

T
=

5746 J mol−1

300.15 K
= 19.14 J K−1 mol−1

Another way to calculate the entropy difference is (“G = H − TS”):

∆S̄ =
∆H̄ −∆Ḡ

T
= 19.14 J K−1 mol−1

Example. An ideal gas expands isothermally at 27 ◦C into an evacuated vessel
so that the pressure drops from 10.00 to 1.000 bar; that is, it expands from a
vessel of 2.463 L into a connecting vessel such that the total volume becomes 24.63
L. Calculate the change in thermodynamic quantities that were calculated in the
previous example.

Solution. This process is isothermal but NOT reversible. Since the system as a
whole is closed, no external work is done and w = 0. Also at constant T , ∆U = 0
and hence the first law of thermodynamics implies that also q = 0. The other
quantities are the same as in the previous example, because the quantities are state
functions and the choice of path does not affect the result. Both initial and final
states in this example are identical to those in the previous example.



176

Example. Calculate the Gibbs energy of formation at 10.00 bar and 298.15 K for:
(a) Gaseous methanol (CH3OH) (the standard Gibbs energy of formation −161.96
kJ mol−1) and (b) Liquid methanol (density 0.7914 g cm−3 and the standard Gibbs
energy of formation −166.27 kJ mol−1). Assume that gaseous methanol behaves
according to the ideal gas law.

Solution. The Gibbs energy of formation is defined essentially the same way as we
defined the enthalpy of formation previously. For (a) we can use Eq. (4.246):

∆fG = ∆fG
◦+RT ln

(
P

P ◦

)

= −161.96 kJ mol−1+
(
8.3145× 10−3 kJ K−1 mol−1

)

× (298.15 K)× ln

(
10.00 bar

1.000 bar

)

= −156.25 kJ mol−1

Thus we see that the Gibbs energy of formation is higher at higher pressure. In
practice this means that it was not as favorable to form methanol at high pressure
than at the low pressure. In both cases the reaction is spontaneous.

For (b) the molar volume of the liquid is approximately independent of pressure.
In this case we can use directly Eq. (4.244). First we have to calculate to molar
volume:
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V̄ =
MCH3OH

ρCH3OH
=

32.04 g mol−1

0.7914 g cm−3
= 40.49 cm3 mol−1

=
(
40.49 cm3 mol−1

)
×
(
10−2 m cm−1

)3
= 40.49× 10−6 m3 mol−1

This gives the molar Gibbs energy of formation:

∆fG = ∆fG
◦ + V̄ (P − P ◦) =

(
−166.27 kJ mol−1

)
+
(
40.49× 10−6 m3 mol−1

)

×
(
9× 105 Pa

103J / kJ

)

= −166.23 kJ mol−1

Note: The Gibbs energy of formation
for a gases and liquids have very dif-
ferent pressure dependency. This can
be seen in the graph shown on the right
(the value of the V̄×∆P term above for
the liquid is small compared to ∆fG

◦).
At the intersection, both species have
the same molar volume.
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4.5 Fugacity and activity

Idea: Keep the basic form of the equations that were derived
for ideal gases, but use an effective pressure (“fugacity”) and
effective chemical potential (“activity”).

Fugacity f = f(P ) would deviate from the real pressure P
at high pressures. At low pressures it approaches the real
pressure:

lim
P→0

f(P )

P
= 1 (4.247)

Gilbert Newton

Lewis, American

physical chemist

(1875 - 1946)

For example, the Gibbs energy (Eq. (4.246)) in terms of fugacity is:

Ḡ = Ḡ◦ +RT ln

(
f

P ◦

)

(4.248)

Note that fugacity has the units of pressure. Also, for a real gas, it is directly related
to the Gibbs energy. If the equation of state for a real gas is know, it is possible to
calculate the fugacity.
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Derivation of expression for fugacity for a real gas at constant temperature:

First recall Eq. (4.222): V =
(

∂G
∂P

)

T,{ni}

At constant temperature: dḠ = V̄ dP (real gas) and dḠid = V̄ iddP (ideal gas)

The Gibbs energy differential between the real and ideal gases is:

d
(

Ḡ− Ḡid
)

=
(

V̄ − V̄ id
)

dP

Integration of both sides gives:

G(P )∫

G(P∗)

d
(

Ḡ− Ḡid
)

=

P∫

P∗

(

V̄ − V̄ id
)

dP (4.249)

Performing the integration yields:

(

Ḡ− Ḡid
)

P
−
(

Ḡ− Ḡid
)

P∗
=

P∫

P∗

(

V̄ − V̄ id
)

dP (4.250)

Letting P ∗ → 0 makes Ḡ→ Ḡid and:

(

Ḡ− Ḡid
)

P
=

P∫

0

(

V̄ − V̄ id
)

dP (4.251)
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Using Eq. (4.248) for the real gas, Eq. (4.246) for the ideal gas and inserting them
into Eq. (4.251) we have:

ln

(
f

P

)

=
1

RT

P∫

0

(

V̄ − V̄ id
)

dP (note: Ḡ◦ is the same for both gases) (4.252)

Exponentiating both sides gives:

φ ≡ f

P
= exp




1

RT

P∫

0

(

V̄ − V̄ id
)

dP



 (4.253)

where φ is called the fugacity coefficient. Next we introduce the molar volumes for
the real and ideal gases (see Eqs. (1.6) and (1.26)):

V̄ =
RTZ

P
and V̄ id =

RT

P

When these are inserted into Eq. (4.253), we get:

φ =
f

P
= exp




1

RT

P∫

0

(
RTZ

P
− RT

P

)

dP



 = exp





P∫

0

Z − 1

P
dP



 (4.254)

Note: The compressibility factor Z depends on pressure, Z = Z(P ).
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Example. What is the expression for the fugacity when the compressibility factor
is expanded as a power series?

Solution. The power series expansion is given by Eq. (1.17):

Z = 1 +B′P + C′P 2 + ...

Inserting this into Eq. (4.254), we get:

f = P exp





P∫

0

Z − 1

P
dP



 = P exp





P∫

0

B′P + C′P 2 + ...

P
dP





= P exp





P∫

0

(
B′ + C′P + ...

)
dP



 = P exp

[

B′P +
C′P 2

2
+ ...

]

Example. What is the expression for the fugacity of a van der Waals gas?

Solution. The compressibility factor of a van der Waals gas is given by Eq. (1.26):

Z = 1 +
1

RT

(

b− a

RT

)

P (to first order in P )
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Just like in the previous example, we insert the expression for Z into Eq. (4.254):

f = P exp





P∫

0

Z − 1

P
dP



 = P exp




1

RT

P∫

0

(

b−
( a

RT

))

dP





= P exp

[
P

RT

(

b− a

RT

)]

Example. Given that the van der Waals constants of N2 are a = 1.408 L2 bar
mol−2 and b = 0.03913 L mol−1, estimate the fugacity of the gas at 50 bar and 298
K.

Solution. Insert the constants into the above expression (previous example):

f = P exp

[
P

RT

(

b− a

RT

)]

= (50 bar)× exp

{(

50 bar
(
0.083145 L bar K−1 mol−1

)
× (298 K)

)

×
[

(
0.03913 L mol−1

)
− 1.408 L2 bar mol−2

(
0.083145 L bar K−1 mol−1

)
× (298 K)

]}

= 48.2 bar
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Note: All thermodynamic tables refer to the ideal gas pressure P instead of the
fugacity. In general, the fugacity can be either smaller (at low P ) or higher than
(at high P ) the true pressure P . This can be seen by inspecting the graph shown in
the first chapter where we plotted Z as a function of P . There Z may take values
on either side of 1, which may make the exponent term in the fugacity expression
(Eq. (4.254)) either negative, zero, or positive.

Even though we have not discussed the chemical potential in detail yet, we conclude
that the same idea can be applied to the chemical potential as well (cf. Eq. (4.248)):

µi = µ◦
i +RT ln (ai) (4.255)

where µi is the chemical potential and ai is the activity. The activity is dimension-
less, and ai = 1 in the reference state for which µi = µ◦

i .
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For real gases: ai =
fi
P◦

For ideal gases: ai =
Pi
P◦

For pure liquids and solids (P ∝ P ◦): ai ≈ 1

If the molar volume is assumed to be constant (i.e., liquids and solids), we can
integrate one of the Maxwell equations (Eq. (4.228)):

(
∂µi

∂P

)

T,{ni}

= V̄i

Integration of this expression yields:

µi(T, P ) = µ◦
i + V̄i (P − P ◦) (4.256)

Note that we assumed that T and V are constants during the integration over P .
Comparison of Eqs. (4.256) with (4.255) shows that:

RT ln (ai) = V̄i (P − P ◦) (4.257)

⇒ ai = eV̄i(P−P◦)/(RT )

Later we will see that when dealing with solutions, we write activity as a product
of activity coefficient and concentration.



185
4.6 The significance of the chemical potential

Recall that we did not carry out Legendre transformation with respect to ni and µi.
Thus U , H, A and G behave exactly the same way with respect to these variables.
Collecting the results from Eqs. (4.205), (4.211), (4.217) and (4.223):

µi =

(
∂U

∂ni

)

S,V,{ni}i 6=j

=

(
∂H

∂ni

)

S,P,{ni}i 6=j

(4.258)

=

(
∂A

∂ni

)

T,V,{ni}i 6=j

=

(
∂G

∂ni

)

T,P,{ni}i 6=j

The last definition based on the Gibbs energy is the most convenient because it is
easy to hold T and P constant in practical applications.

Consider a single species which is distributed in two different phases. An example of
such system is liquid water and water vapor. Let us denote the amount of substance
in phase α as nα and the amount of substance in phase β as nβ . The corresponding
chemical potentials are denoted by µα and µβ . When an infinitesimal amount of
substance is transferred between the phases, we have −dnα = dnβ ≡ dn (what
leaves α must enter β and vice versa). According to Eq. (4.258), differential of the
Gibbs energy is (constant T and P ):

(dG)T,P = µαdnα + µβdnβ =
(
µβ − µα

)
dn (4.259)
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Recall that for a spontaneous process dG < 0. Consider five different cases:

1. dn > 0 (i.e. substance moves from α to β) and µβ < µα. This fulfills the dG
requirement for a spontaneous process. Substance moves from the phase
with higher chemical potential to the phase where the chemical potential is
lower.

2. dn > 0 (i.e. substance moves from α to β) and µβ > µα. dG would be
positive and therefore this process is not spontaneous.

3. dn < 0 (i.e. substance moves from β to α) and µβ < µα. dG would be
positive and therefore this process is not spontaneous.

4. dn < 0 (i.e. substance moves from β to α) and µβ > µα. This fulfills the dG
requirement for a spontaneous process. Substance moves from the phase
with higher chemical potential to the phase where the chemical potential is
lower.

5. dn = 0 (i.e. nothing transferred) or µα = µβ (i.e. chemical potentials equal).
This corresponds to equilibrium (dG = 0). Such an equilibriums can exist
even if the phases are at different pressures.
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Measurement of µi as a function of P and T can be used to determine the molar
entropy and the molar volume. To do this, we use the Maxwell relations (derivation
is similar to Eqs. (4.226) - (4.228)):

− S̄i = −
(

∂S

∂ni

)

=

(
∂µi

∂T

)

P,{ni}

(4.260)

V̄i =

(
∂V

∂ni

)

=

(
∂µi

∂P

)

T,{ni}

(4.261)

Example. Consider a mixture of ideal gases. What are the expressions for the
chemical potentials and the partial molar entropies?

Solution. For simplicity we carry out the calculation for two species. Extension
to many species is straight forward. We will show this in three parts:

1. Prove that the molar volume of the mixture (V ) is equal to the partial molar
volumes of the components (V1 and V2).

2. Use Eq. (4.228) to obtain (∂µi/∂Pi).

3. Integrate the resulting expression to obtain µi.
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Step #1. First we note that the total number of gas atoms/molecules is given by
n = n1 + n2, the total pressure P = P1 + P2 where each gas follows its own ideal
gas law PiV = niRT . There is no interaction between gas atoms/molecules in an
ideal gas and therefore we can add up all these individual ideal gas equations to get

V = nRT
P

. Now Eq. (1.43) ⇒ V̄i =
(

∂V
∂ni

)

T,P,{nj}j 6=i

= RT
P

= V̄ .

Step #2. By using Eq. (4.261), the above result, the chain rule and Pi = xiP , we
can write:

V̄ =
RT

P
= V̄i =

(
∂µi

∂P

)

T,{ni}

=

(
∂µi

∂Pi
× ∂Pi

∂P

)

T,{ni}

= xi

(
∂µi

∂Pi

)

T,{ni}

⇒
(
∂µi

∂Pi

)

T,{ni}

=
RT

Pi
(4.262)

Step #3. Integration of the above equation gives:

µi∫

µ◦
i

dµi = RT

Pi∫

P◦

dPi

Pi

µi = µ◦
i +RT ln

(
Pi

P ◦

)

(4.263)
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By differentiating Eq. (4.263) with respect to T and using Eq. (4.260) we get:

S̄i = S̄◦
i −R ln

(
Pi

P ◦

)

(4.264)

The same equation for pure ideal gas was derived earlier: S̄ = S̄◦ −R ln
(

P
P◦

)

.

Note: The chemical potential is one of the most important concepts in chemical
thermodynamics. In both chemical reactions and phase changes, the chemical po-
tential of a species times its differential amount (reacted or transferred) determines
the change in U , H, A, or G, depending on the variables that are held constant
during the process.
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4.7 Additivity of partial molar properties

In the following we will derive partial molar properties for U , A, G, S, V and H at
constant P and T .

1. Partial molar Gibbs energy

Eq. (4.258) states that the chemical potential µi is the partial molar Gibbs energy:

G =

Ns∑

i=1

niµi =

Ns∑

i=1

(
∂G

∂ni

)

T,P,{nj}i 6=j

× ni =

Ns∑

i=1

niḠi

This is in agreement with the definition (i.e. Eqs. (1.42) and (1.43)). Note that T
and P are constant.

2. Partial molar entropy

Differentiation of both sides of the above equation with respect to −T gives:

−
(
∂G

∂T

)

P,{ni}
︸ ︷︷ ︸

=S (Eq. (4.221))

= −
Ns∑

i=1

ni

(
∂µi

∂T

)

P,{ni}
︸ ︷︷ ︸

=−
(

∂S
∂ni

)

, Eq. (4.227)

⇒ S =

Ns∑

i=1

ni

(
∂S

∂ni

)

T,P,{nj}j 6=i

=

Ns∑

i=1

S̄ini

This is consistent with Eqs. (1.42) and (1.43).
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3. Partial molar volume

Eq. (4.222) reads: V =
(

∂G
∂P

)

T,{ni}

Eqs. (1.43) and (4.261) give: V̄i =
(

∂V
∂ni

)

T,P,{nj}j 6=i

=
(

∂µi
∂P

)

T,{ni}

Differentiation of the Gibbs energy equation on the previous page with respect to
P gives (“the Gibbs energy Eq. differentiated”; cf. Eqs. (1.42) and (1.43)):

V =

(
∂G

∂P

)

T,{ni}

=

Ns∑

i=1

ni

(
∂µi

∂P

)

T,{ni}

=

Ns∑

i=1

V̄ini (4.265)

4. Partial molar enthalpy

Recall that: H = G+ TS. Since both G and S are additive:

H = G+ TS =

Ns∑

i=1

niḠi + T

Ns∑

i=1

niS̄i =

Ns∑

i=1

ni

(
∂G

∂ni
+ T

∂S

∂ni

)

T,P,{nj}j 6=i

(4.266)

=

Ns∑

i=1

ni

(
∂ (G+ TS)

∂ni

)

T,P,{nj}j 6=i

=

Ns∑

i=1

ni

(
∂H

∂ni

)

T,P,{nj}j 6=i

Note: The same additivity properties hold for U and A as well.
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How do ideal mixtures of gases behave?

By ideal mixture we mean that the gases do not interact with each other and hence
they have their independent equations of state. Consider an alternative form of Eq.
(4.263):

µi = µ◦
i +RT ln

(
Pi

P ◦

)

= µ◦
i +RT ln

(
yiP

P ◦

)

(4.267)

where yi is the mole fraction and P is the total pressure (this will be used below).

1. The total Gibbs energy of an ideal gas mixture

G =

Ns∑

i=1

niµi =

Ns∑

i=1

ni

(

µ◦
i +RT ln

(
yiP

P ◦

))

=

Ns∑

i=1

niµ
◦
i +RT

Ns∑

i=1

ni ln (yi) (4.268)

+RT ln

(
P

P ◦

) Ns∑

i=1

ni = n









Ns∑

i=1

yiµ
◦
i +RT

Ns∑

i=1

yi ln (yi) +RT ln

(
P

P ◦

) Ns∑

i=1

yi

︸ ︷︷ ︸

≡1









= nḠ

where n = n1 + ...+ nNs and Ḡ = G/n is the molar Gibbs energy of the mixture.

Note: Expressions for S, V , U , H and A can be obtained from this equation by
using the relations connecting these variables to each other.
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2. The total entropy of an ideal mixture

S = −
(
∂G

∂T

)

P,{ni}

(4.269)

= −









Ns∑

i=1

ni

=−S̄◦
i (Eq. (4.260))
︷ ︸︸ ︷
(
∂µ◦

i

∂T

)

+R

Ns∑

i=1

ni ln (yi) +R ln

(
P

P ◦

)

=n
︷ ︸︸ ︷

Ns∑

i=1

ni









= n





Ns∑

i=1

yiS̄
◦
i −R

Ns∑

i=1

yi ln (yi)−R ln

(
P

P ◦

)


 = nS̄

where S̄ = S/n is the total molar entropy of the mixture.

3. The total enthalpy of an ideal mixture

At constant P and T , H = H◦ and Eqs. (4.268), (4.269), (4.258) and (1.43) give:

H = H◦ = G◦ + TS◦ =

Ns∑

i=1

ni

(
µ◦
i + T S̄◦

i

)
(4.270)

=

Ns∑

i=1

ni

(
∂G◦

∂ni
+ T

∂S◦

∂ni

)

T,P,{nj}j 6=i

=

Ns∑

i=1

ni

(
∂H◦

∂ni

)

=

Ns∑

i=1

niH̄
◦
i

Note: The expression is independent of pressure (i.e. non-interacting gases).
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4. The volume of an ideal gas mixture

Direct calculation gives (n = n1 + ...+ nNs , P = P1 + ...+ PNs ):

V =
nRT

P
=

Ns∑

i=1

RT

P
︸︷︷︸

≡(∂V/∂ni)

ni =

Ns∑

i=1

ni

(
∂V

∂ni

)

︸ ︷︷ ︸

=V̄i

=

Ns∑

i=1

niV̄i (4.271)

Example. Consider mixing of two ideal gases as follows:

What are the initial values and the changes in Gibbs energy, entropy, enthalpy, and
volume?
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Solution. The initial values (i.e. before mixing) for the thermodynamic quantities
in question are given by (separate systems):

Gini = n1µ1 + n2µ2

Eq. (4.263)
︷︸︸︷
= n1µ

◦
1 + n1RT ln

(
P

P ◦

)

+ n2µ
◦
2 + n2RT ln

(
P

P ◦

)

Sini = n1S̄1 + n2S̄2

Eq. (4.264)
︷︸︸︷
= n1S̄

◦
1 − n1R ln

(
P

P ◦

)

+ n2S̄
◦
2 − n2R ln

(
P

P ◦

)

Hini = n1H̄
◦
1 + n2H̄

◦
2

Vini = n1
RT

P
+ n2

RT

P

After mixing the thermodynamic quantities become:

Gfin

Eq. (4.268)
︷︸︸︷
=

=Gini
︷ ︸︸ ︷

n1µ
◦
1 + n1RT ln

(
P

P ◦

)

+ n2µ
◦
2 + n2RT ln

(
P

P ◦

)

+n1RT ln (y1)

+n2RT ln (y2) = Gini +RT




n1

<0
︷ ︸︸ ︷

ln (y1)+n2

<0
︷ ︸︸ ︷

ln (y2)




 = Gini +

<0 (spontaneous)
︷ ︸︸ ︷

∆mixG
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Sfin

Eq. (4.269)
︷︸︸︷
= n1S̄

◦
1 − n1R ln

(
P

P ◦

)

+ n2S̄
◦
2 − n2R ln

(
P

P ◦

)

︸ ︷︷ ︸

=Sini

−Rn1 ln (y1)−Rn2 ln (y2)
︸ ︷︷ ︸

=∆mixS>0

= Sini +∆mixS (entropy increases)

Hfin

Eq. (4.270)
︷︸︸︷
= n1H̄

◦
1 + n2H̄

◦
2 = Hfin ⇒ ∆mixH = 0

Vfin

Eq. (4.271)
︷︸︸︷
= n1

RT

P
+ n2

RT

P
= Vini ⇒ ∆mixV = 0
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4.8 Gibbs-Duhem Equation

In this section we derive the Gibbs-Duhem equation, which we will need later. First
we use Eq. (4.208) constant T and P :

U(V, S, {ni}) =
Ns∑

i=1

niµi − PV + ST

If we let each quantity vary in forming the corresponding differential dU , we get:

dU =

Ns∑

i=1

nidµi +

Ns∑

i=1

µidni − PdV − V dP + SdT + TdS

On the other hand, the total derivative of U in Eq. 4.203) gives:

dU =

Ns∑

i=1

µidni − PdV + TdS
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By subtracting the two equations from each other yields:

Ns∑

i=1

nidµi − V dP + SdT = 0 (4.272)

This is known as the Gibbs-Duhem equation. We will use it later when we discuss
the Clapeyron equation as well as Henry’s and Raoult’s laws.

Notes:

1. At constant P and T , Eq. (4.272) becomes:
Ns∑

i=1
nidµi = 0.

2. For a system with two species at constant T and P we have (y1 and y2 are
the mole fractions for species 1 and 2):

y1dµ1 + y2dµ2 = 0 (with y2 = 1− y1) (4.273)

⇒ y1dµ1 + (1− y1)dµ2 = 0

(conservation of chemical potential)
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4.9 Additional applications of Maxwell relations

First we consider Maxwell relations for a pure system (i.e., only one species). The
equations can be derived using U , H, A or G:

(
∂T

∂V̄

)

S̄

Eq. (4.205)
︷︸︸︷
=

(
∂2Ū

∂V̄ ∂S̄

) x-change OK
︷︸︸︷
=

(
∂2Ū

∂S̄∂V̄

)Eq. (4.205)
︷︸︸︷
=

(
∂P

∂S̄

)

V̄

(4.274)

(
∂T

∂P

)

S̄

Eq. (4.211)
︷︸︸︷
=

(
∂2H̄

∂P∂S̄

) x-change OK
︷︸︸︷
=

(
∂2H̄

∂S̄∂P

)Eq. (4.211)
︷︸︸︷
=

(
∂V̄

∂S̄

)

P

(4.275)

(
∂S̄

∂V̄

)

T

Eq. (4.215)
︷︸︸︷
=

(
∂2Ā

∂V̄ ∂T

) x-change OK
︷︸︸︷
=

(
∂2Ā

∂T∂V̄

)Eq. (4.216)
︷︸︸︷
=

(
∂P

∂T

)

V̄

(4.276)

−
(
∂S̄

∂P

)

T

Eq. (4.221)
︷︸︸︷
=

(
∂2Ḡ

∂P∂T

) x-change OK
︷︸︸︷
=

(
∂2Ḡ

∂T∂P

)Eq.(4.222)
︷︸︸︷
=

(
∂V̄

∂T

)

P

(4.277)
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When a number of different species are present, the chemical potential must be
included. For example for the internal energy U , the following Maxwell relations
can be written (similar relations exist also for H, A and G):

(
∂T

∂ni

)

S,V,{nj}j 6=i

=

(
∂µi

∂S

)

V,{ni}

(4.278)

−
(

∂P

∂ni

)

S,V,{nj}j 6=i

=

(
∂µi

∂V

)

S,{ni}

(4.279)

(
∂µi

∂nj

)

S,V,{nk}k 6=j

=

(
∂µj

∂ni

)

S,V,{nk}k 6=i

(4.280)

Example. Calculate
(
∂Ū/∂V̄

)

T
for a real gas.

Solution. Earlier we have shown that
(
∂Ū/∂V̄

)

T
= 0 for an ideal gas. If the

equation of state of the real gas is known in terms of P , we will be able to use the
following equation to calculate the partial derivative:

(
∂Ū

∂V̄

)

T

= T

(
∂P

∂T

)

V̄

− P (4.281)
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To show that this result holds, we first combine the 1st and 2nd laws of thermody-
namics (reversible process):

1st law: dU = dqrev + dwrev = dqrev − PdV (if only PV -work)

2nd law: dS =
dqrev

T

Combined: dU = TdS − PdV

By considering molar quantities in above, dividing both sides of the equation by
dV̄ , and imposing constant temperature gives:

(
∂Ū

∂V̄

)

T

= T

(
∂S̄

∂V̄

)

T

− P (4.282)

Now Eq. (4.276) allows us to write this as:

(
∂Ū

∂V̄

)

T

= T

(
∂P

∂T

)

V̄

− P

Example. This equation can be applied to a van der Waals gas. In this case the
pressure can be written as (Eq. (1.24)):

P =
RT

V̄ − b
− a

V̄ 2
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Differentiation of P with respect T gives:
(

∂P
∂T

)

V̄
= R

V̄ −b

Substitution of this derivative in Eq. (4.281) gives the partial derivative:
(
∂Ū

∂V̄

)

=
RT

V̄ − b
− P =

RT

V̄ − b
−
(

RT

V̄ − b
− a

V̄ 2

)

=
a

V̄ 2
(4.283)

Integration of this equation yields the change in internal energy for a given change
in volume at constant temperature:

∆Ū =

Ū2∫

Ū1

dŪ =

V̄2∫

V̄1

a

V̄ 2
dV̄ = a

(
1

V̄1
− 1

V̄2

)

Example. Propane gas is allowed to expand isothermally from 10 to 30 L/mol.
What is the change in the molar internal energy? Use the van der Waals equation
with a = 8.779 L2 bar mol−2.

Solution. First we have to convert the value of a into SI units:

a =
(
8.779 L2 bar mol−2

)
×
(
105 Pa bar−1

)
×
(
10−3 m3 L−1

)2

= 0.8779 Pa m6 mol−2
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Then we can use the expression for ∆U on the previous page:

∆Ū = a

(
1

V̄1
− 1

V̄2

)

=
(
0.8779 Pa m6 mol−2

)

×
(

1

10× 10−3 m3 mol−1
− 1

30× 10−3 m3 mol−1

)

= 58.5 J mol−1

Example. What is the change in the molar entropy when a van der Waals gas
expands isothermally?

Solution. First we use one of the Maxwell relations (Eq. (4.276)) and then we
integrate both sides of the resulting equation (see also the previous example):

(
∂S̄

∂V̄

)

T

Eq. (4.276)
︷︸︸︷
=

(
∂P

∂T

)

V̄

=
R

V̄ − b

S̄2∫

S̄1

dS̄ = R

V̄2∫

V̄1

dV̄

V̄ − b
⇒ ∆S̄ = R ln

(
V̄2 − b

V̄1 − b

)
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Cubic and isothermal expansion coefficients

The cubic expansion coefficient is defined as (“how the volume of a substance
changes with temperature”):

α =
1

V

(
∂V

∂T

)

P

=
1

V̄

(
∂V̄

∂T

)

P

(4.284)

The isothermal compressibility coefficient is defined as (“how the volume of a sub-
stance changes with pressure”):

κ = − 1

V

(
∂V

∂P

)

T

= − 1

V̄

(
∂V̄

∂P

)

T

(4.285)

For an ideal gas these quantities are α = 1/T and κ = 1/P . These constants can
also be used in simplifying thermodynamic expressions. For example:

(
∂P

∂T

)

V̄

= −
(
∂V̄ /∂T

)

P
(
∂V̄ /∂P

)

T

=
α

κ
(4.286)

and further:

(
∂Ū

∂V̄

)

T

Eq. (4.281)
︷︸︸︷
=

αT − κP

κ
(4.287)
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Dependency of enthalpy on the pressure at constant temperature

We are seeking an expression like Eq. (4.281) that would help us to calculate the
dependency of enthalpy on pressure. Both sides of the differential dH = TdS+V dP
can be divided by pressure at constant T to obtain:

(
∂H̄

∂P

)

T

= T

(
∂S̄

∂P

)

T

+ V̄ (4.288)

Using one of the Maxwell relations (Eq. (4.226)), we can modify this equation to:
(
∂H̄

∂P

)

T

= −T
(
∂V̄

∂T

)

P

+ V̄ (4.289)

The relation between constant pressure and constant volume heat capacities

In Eq. (2.116) we found the following relation:

C̄P − C̄V =

[

P +

(
∂Ū

∂V̄

)

T

](
∂V̄

∂T

)

P

(4.290)

From Eqs. (4.284), (4.285) and (4.287) we can now get:

C̄P − C̄V =
T V̄ α2

κ
(4.291)

Note that often it is more difficult to measure CV than CP experimentally. If CP

is known, the above equation gives CV .



Chapter 5: Chemical equilibrium

“Chemical reactions always attempt to approach equilibrium with an equilibrium
constant given by the the standard reaction Gibbs energy”
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5.1 Derivation of the general equilibrium expression

Norwegian chemists: Cato

Guldberg (1836 - 1902)

and Peter Waage (1833 -

1900)

Experiments: Chemical reactions can approach equi-
librium from either direction (CG & PW):

A + B ⇋ C+D

Thus it does not matter, if one mixes (A and B) or (C
and D), the system will end up in the same equilib-
rium. Also they realized that the equilibrium depends
on concentrations of A, B, C and D. Later van’t Hoff
(1877) suggested an expression for equilibrium, which
depends on concentrations.

Recall Eq. (4.220): dG = −SdT + V dP +
Ns∑

i=1
µidni

Remember that most chemical reactions are carried out at constant pressure and
temperature and hence dT = dP = 0. Next, recall Eq. (2.135):

ni = ni,0 + viξ (5.292)

where ni is the amount of species i, ni0 is the initial amount of species i, vi is
the stoichiometric coefficient and ξ is the extent of reaction. Eq. (5.292) yields
the differential dni = vidξ. Sometimes we use the “scaled” version of Eq. (5.292):
ni = ni,0 + vini,0ξ where ξ is now strictly between 0 and 1.
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If one chemical reaction is considered, substitution of the differential into Eq. (4.220)
gives:

dG = −SdT + V dP +





Ns∑

i=1

viµi



 dξ (5.293)

At specified fixed T and P :
(
∂G

∂ξ

)

T,P

=

Ns∑

i=1

viµi (5.294)

In chemical equilibrium G has its minimum value and hence:
(

∂G
∂ξ

)

T,P
= 0

Implying this condition to Eq. (5.294), we get the equilibrium condition:

Ns∑

i=1

viµi,eq = 0 (5.295)

This is equilibrium condition applies to all chemical equilibria (gases, liquids, solids,
or solutions).

In similar fashion to Eq. (2.137), we define the reaction Gibbs energy ∆rG:

∆rG =

(
∂G

∂ξ

)

T,P

(5.296)
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By combining the equilibrium condition, Eqs. (5.294) and (5.296):

∆rG =

Ns∑

i=1

viµi (5.297)

The reaction Gibbs energy at a given value of ξ, tells us how much the Gibbs energy
changes when ξ is varied. Its value approaches zero when close to the equilibrium.

Consider reaction: A + B ⇋ C+D

Note: Usually ∆ does denotes a difference but here it denotes a derivative. However,
there is a close connection to differences in chemical potentials via Eq. (5.297).
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To proceed towards the concept of equilibrium constant, recall Eq. (4.255):

µi = µ◦
i +RT ln (ai)

where µ◦
i is the standard chemical potential and ai is activity of species i. In

equilibrium, this equation can be written as (ai,eq = ai(ξeq)):

µi,eq = µ◦
i +RT ln (ai,eq) (5.298)

Inserting this into the equilibrium condition, Eq. (5.295), gives:

Ns∑

i=1

viµ
◦
i = −RT

Ns∑

i=1

vi ln (ai,eq) (5.299)

Using the rules of algebra for logarithms, this can be rewritten:

Ns∑

i=1

viµ
◦
i = −RT

Ns∑

i=1

ln
(

a
vi
i,eq

)

(5.300)

and further (“a sum of logarithms is a logarithm of products”):

Ns∑

i=1

viµ
◦
i

︸ ︷︷ ︸

=∆rG◦

= −RT ln





Ns∏

i=1

a
vi
i,eq





︸ ︷︷ ︸

≡K

= −RT ln(K) (5.301)

Note: ∆rG◦ is a plain number, which comes from the standard chemical potentials
of the isolated species A, B, C, D whereas ∆rG is a function depending on ξ. The
value of ∆rG◦ depends only on the species which react but not on the details of
the reaction itself. ∆rG describes the reaction.
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Thus we can summarize the previous result as:

∆rG
◦ = −RT ln (K) (5.302)

The equilibrium constant K is directly related to the standard reaction Gibbs en-
ergy ∆rG◦. Because ∆rG◦ is a function of temperature only (pressure fixed to 1
bar), the equilibrium constant K depends only on temperature. Note that K is a
dimensionless quantity.

Let’s consider a non-equilibrium condition (i.e. ∆rG 6= 0) and rewrite Eqs. (5.297)
and (5.298) as:

∆rG =

Ns∑

i=1

viµ
◦
i +RT

Ns∑

i=1

vi ln(ai) = ∆rG
◦+RT ln





Ns∏

i=1

a
vi
i





︸ ︷︷ ︸

≡Q

= ∆rG
◦+RT ln (Q)

(5.303)
where we have defined reaction quotient Q. It is a very similar quantity to K but
it is a dynamic variable that describes a non-equilibrium situation. At equilibrium,
Q = K and in generalQ = Q(ξ) whereasK does not depend on ξ. By calculating the
reaction quotient Q, it is possible to determine the direction in which the chemical
reaction would proceed at given ξ. Substitution of the definition of the Gibbs energy
(G = H − TS) into Eq. (5.296) gives:

∆rG =

(
∂H

∂ξ

)

T,P

− T

(
∂S

∂ξ

)

T,P

= ∆rH − T∆rS (5.304)
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Note that the previous definition is in agreement with Eqs. (2.137). The same
equation also applies when the reactants and products are in their standard states:

∆rG
◦ = ∆rH

◦ − T∆rS
◦ (5.305)

Example. Write expressions for K and Q for the following reaction:

3C(graphite) + 2H2O(g) ⇋ CH4(g) + 2CO(g)

By applying Eqs. (5.301) and (5.303) we have:

K =

(

aCH4
a2CO

a3Ca
2
H2O

)

where the activities are evaluated at equilibrium (ξeq)

Q(ξ) =

(

aCH4
a2CO

a3Ca
2
H2O

)

where the activities are evaluated at a given point ξ

Also Q (ξeq) = K.
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5.2 Equilibrium constant expressions for gas reactions

Recall that for real gases the activity is given by (see Eqs. (4.248) and (4.255)):

ai =
fi
P◦ where P ◦ is the standard state pressure (1 bar) and fugacity is given, for

example, by Eq. (4.254):

fi = Pi exp






Pi∫

0

Z − 1

P
dP






and Z is the compressibility factor of the gas. At equilibrium Eq. (5.301) now gives:

K =

Ns∏

i=1

a
vi
i,eq =

Ns∏

i=1

(
fi,eq

P ◦

)vi

(5.306)

For ideal gases Eq. (5.306) can be written as follows (ai = Pi/P
◦, see Eq. (4.255)):

K =

Ns∏

i=1

(
Pi,eq

P ◦

)vi

and Q =

Ns∏

i=1

(
Pi

P ◦

)vi

(5.307)

Notes:

◮ K depends only on partial pressures Pi and also on the total pressure P .

◮ As K depends on the way the stoichiometric coefficients are written, a full
reaction equation must always be written when specifying K.

◮ K determines ξeq (the equilibrium extent of the reaction) via Eq. (5.301).
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Example. A mixture of CO(g) and CH3OH(g) at 500 K with PCO = 10 bar,
PH2

= 1 bar, and PCH3OH = 0.1 bar is passed over a catalyst. The reaction
occurring in the gas phase is:

CO(g, 10 bar) + 2H2(g, 1 bar) = CH3OH(g, 0.1 bar)

where the standard reaction Gibbs energy is ∆rG◦ = 21.21 kJ mol−1. In which
direction would the reaction proceed? Assume that the gases behave according to
the ideal gas law.

Solution. Recall that the the reaction Gibbs energy (∆rG) tells us which way the
reaction would proceed. If it is negative, the reaction proceeds spontaneously from
left to right and if it is positive, the reaction proceeds spontaneously from right
to left. If ∆rG is zero, the reaction is in equilibrium. By using Eqs. (5.303) and
(5.307) we get:

∆rG = ∆rG
◦+RT ln (Q) = 21.21 kJ mol−1+

(
0.0083145 kJ K−1 mol−1

)
×(500 K)

× ln

(
0.1

10× 12

)

= 2.07 kJ mol−1 > 0

Thus the reaction is not spontaneous as written. Note that the only effect of P ◦’s
in this calculation were to cancel the units since its numerical value was 1 bar. The
stoichiometric coefficients are: vCO = −1, vH2

= −2 and vCH3OH = 1.
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If the conditions had been chosen as follows:

CO(g, 1 bar) + 2H2(g, 10 bar) = CH3OH(g, 0.1 bar)

we would have:

∆rG = 21.21 kJ mol−1 +
(
0.0083145kJ K−1 mol−1

)
(500 K)× ln

(
0.1

1× 102

)

= −7.51 kJ mol−1 < 0

This means that the reaction would be thermodynamically spontaneous.

Example. Consider decomposition reaction of water:

H2O(g) ⇋ H2(g) +
1

2
O2(g)

The standard reaction Gibbs energy for this reaction is 118.08 kJ mol−1 at 2300 K.
What is the extent of reaction ξeq at 2300 K and at a total pressure of 1.00 bar?
Assume that gases behave according to the ideal gas law.

Solution. First we use Eq. (5.302) to get the equilibrium constant K:

ln (K) = −∆rG◦

RT
=

118080 J mol−1

(
8.3145 J K−1 mol−1

)
× (2300 K)

= −6.175⇒ K = 2.08×10−3
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In the following, the initial amount of water is denoted by n and initially all
other concentrations are zero. At given extent of reaction ξ, the amount of each
component is: nH2O = (1 − ξ)n, nH2

= ξn and nO2
= ξn/2. Thus the total

amount is (1− ξ)n + ξn + ξn/2 = n (1 + ξ/2) and the mole fractions are then:
yH2O = (1− ξ) / (1 + ξ/2), yH2 = ξ/ (1 + ξ/2) and yO2 = (ξ/2) / (1 + ξ/2). The
partial pressures (Pi) can be calculated by multiplying the corresponding mole frac-
tion by the total pressure P . Note that the choice of ξ is slightly different than in
Eq. (5.292) (scaling ξ = nξ′ so that ξ is now between 0 and 1). Then apply Eq.
(5.307) to relate the partial pressures to K:

K =
PH2

√
PO2

PH2O

√
P ◦

=
ξ
3/2
eq P̄ 1/2

(1− ξeq) (2 + ξeq)
1/2

where P̄ = P/P ◦ = (1 bar) / (1 bar) = 1

K =
ξ
3/2
eq

(1− ξeq) (2 + ξeq)
1/2

= 2.08× 10−3 ⇒ ξeq = 0.020 (numerical solution)

(there are actually three roots: one real and two complex)

Therefore about 2% of H2O is dissociated under the given conditions.

Example. Demonstrate that chemical reactions in the gas phase never go to com-
pletion. Assume ideal gas behavior as well as constant pressure and temperature.

Solution. Consider reaction A(g) = B(g) at constant pressure. First calculate the
Gibbs energy of the system as a function of the extent of reaction ξ (Eq. (5.293)):
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dG = −S dT
︸︷︷︸

=0

+V dP
︸︷︷︸

=0

+





Ns∑

i=1

viµi(ξ)



 dξ = µB(ξ)dξ − µA(ξ)dξ

Using Eq. (4.255), the chemical potentials can be written as:

µA = µ◦
A +RT ln

(
PA

P ◦

)

= µ◦
A +RT ln

(
yAP

P ◦

)

= µ◦
A +RT






ln (yA)

︸ ︷︷ ︸

=(1−ξ)ntot/ntot

+ ln

(
P

P ◦

)







= µ◦
A +RT

(

ln (1− ξ) + ln

(
P

P ◦

))

µB = µ◦
B +RT

(

ln (ξ) + ln

(
P

P ◦

))

Inserting these results into the expression for dG, we get:

dG =







∆µBA
︸ ︷︷ ︸

=µ◦
B−µ◦

A

+RT ln

(
ξ

1− ξ

)







dξ
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Integration of this equation from the initial point (ξ = 0) to ξ gives:

G(ξ)∫

G(0)

dG =

ξ∫

0

{

∆µBA +RT ln

(
ξ

1− ξ

)}

dξ ⇒

∆G(ξ) = ξ∆µBA+RT

ξ∫

0

ln

(
ξ

1− ξ

)

dξ = ξ∆µBA+RT ((1− ξ) ln (1− ξ) + ξ ln (ξ))
︸ ︷︷ ︸

=∆mixG

Consider the following examples (∆G in units of J mol−1):
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5.3 Determination of equilibrium constants

Consider a chemical reaction: aA + bB ⇋ cC + dD. If the initial concentra-
tions/pressures [A]0, [B]0, [C]0 and [D]0 are known and one of [A], [B], [C] or [D] is
known at equilibrium, it is possible to use the above balanced chemical equation to
obtain concentrations of all of the species at equilibrium. This is because there is
just one variable that describes the reaction (ξ; the extent of reaction). Given the
equilibrium concentrations/pressures for all the species, it is possible to derive an
expression for K in terms of ξeq by using Eq. (5.307) and thus obtain a value for
K using experimental data.

Examples of methods for determining concentrations/pressures:

◮ measurement of gas density or pressure

◮ light absorption

◮ refractive index

◮ electrical conductivity

Notes:

1. The measurement may not change any of the concentrations/pressures in the
system - otherwise the measurement would change the equilibrium as well!

2. The same value for K should be obtained when the equilibrium is
approached from either side.

3. The same value for K should be obtained over a wide range of initial
concentrations.
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The relation between K and ξeq :

We have already seen that the equilibrium constant K can be written in terms
of ξeq (e.g., the water dissociation example). In the following we will consider a
general equation of the form: A ⇋ mB and derive a general expression for the
equilibrium constant. The reaction is assumed to occur in the gas phase and all
gaseous components should follow the ideal gas law. According to Eq. (5.307) the
equilibrium constant can be written as:

K =

(
PA

P ◦

)−1

×
(
PB

P ◦

)m

(5.308)

Let us denote the total pressure by P and partial pressures of A and B by PA =
yAP and PB = yBP . The concentrations of A and B at equilibrium can be written
in terms of ξeq (note the scaling of ξ):

nA,eq = nA,0 (1− ξeq) and nB,eq = nA,0ξeqm (5.309)

The total amount = nA,eq + nB,eq = nA,0 (1− ξeq) + nA,0ξeqm

From this we can calculate the molar fractions and further the partial pressures PA

and PB:

yA =
1− ξeq

1− ξeq (1−m)
and yB =

ξeq

1− ξeq (1−m)
(5.310)
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PA = P × 1− ξeq

1− ξeq (1−m)
and PB = P × ξeqm

1− ξeq (1−m)
(5.311)

Inserting these into the equilibrium constant expression, we get:

K =

(
P

P ◦

)m−1

×
(

1− ξeq

1− ξeq (1−m)

)−1

×
(

ξeqm

1− ξeq (1−m)

)m

(5.312)

=

(
P/P ◦

1− ξeq (1−m)

)m−1

× (ξeqm)m

(1− ξeq)

If m = 2 (for example, N2O4(g) = 2NO2(g)), this reduces to:

K =
4ξ2eqP/P ◦

1− ξ2eq
(5.313)

Equilibrium extent of reaction as a

function of pressure at various

values of K.

In this case, the equation can be also solved for ξ:

ξeq =
1

[1 + (4/K) (P/P ◦)]1/2
(5.314)
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The relation between ξeq and gas densities:

When m > 1, it is possible to determine the extent of reaction by measuring the
density of the gas. For example, consider reaction A = 2B and denote the mass
of A by mA and the molecular mass by MA. Also assume that temperature and
pressure are constant and that both A and B follow the ideal gas law. The initial
volume before the reaction takes place is:

Vini =
mART

MAP
(where we used n = mA/MA) (5.315)

At equilibrium we have a similar equation (the total mass is conserved in chemical
reactions and we still use mA below):

Veq =
mART

MeqP
where Meq = yAMA + yBMB = yAMA +

1

2
yBMA (5.316)

where we also used the fact that MA = 2MB (the mass conservation restriction).
Calculation of the ratios between the volumes gives:

Vini

Veq
=

Meq

MA
=

yAMA + 1
2
yBMA

MA
=

1

1 + ξeq
(5.317)

with yA =
1− ξeq

1 + ξeq
and yB =

2ξeq

1 + ξeq
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Note that the mass conservation also relates the volumes to densities ρ:
{
ρiniVini = mA

ρeqVeq = mA
⇒ ρeq

ρini
=

Vini

Veq
(5.318)

If we solve for ξeq on previous page, we get two useful results:

ξeq =
MA −Meq

Meq
and ξeq =

ρini − ρeq

ρeq
(5.319)

Thus by measuring either the molar masses or gas densities before the reaction takes
place and at the equilibrium, Eq. (5.319) can be used for calculating ξeq . Note that
this derivation assumed a specific stoichiometry for the chemical equation.

Example. Consider reaction N2O4(g) = 2NO2(g) (molecular weight of N2O4 is
92.01 g mol−1) at constant T (298.15 K) and P (1.0133 bar). 1.588 g of N2O4

dissociates and expands to 500 cm3 volume. What is the extent of reaction ξeq and
the equilibrium constant K?

Solution. ξeq can be calculated using Eq. (5.319) with the molecular weights as
follows:

Meq =
mN2O4

RT

VeqP
=

(1.588 g)
(
0.083145 L bar K−1 mol−1

)
(298.15 K)

(1.013 bar) (0.5 L)

= 77.70 g mol−1
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Mini was given as 92.01 g mol−1 and now by applying Eq. (5.319) we get:

ξeq =
Mini −Meq

Meq
=

(
92.01 g mol−1

)
−
(
77.70 g mol−1

)

77.70 g mol−1
= 0.1842

The equilibrium constant can be obtained from Eq. (5.314):

K =
4ξ2eq (P/P ◦)

1− ξ2eq
=

4 (0.1842)2 (1.0133)

1− (0.1842)2
= 0.143

For a more complicated reaction A + 3B = 2C, the following expression for the
equilibrium constant can be obtained:

K =
16ξ2eq (1− ξeq)

(1− 3ξeq)
3 (P/P ◦)2

(5.320)

Each type of reaction requires its own expressions for K and ξeq but they can be
derived by using the previously outlined approach.
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Example. Consider the following reaction: N2(g) + 3H2(g) = 2NH3(g). What
total pressure must be used to obtain 10% conversion of nitrogen to ammonia at
400 ◦C? Assume equimolar initial mixture of N2 and H2 and ideal gas behavior.
The equilibrium constant for the reaction is 1.60 × 10−4 at standard pressure of 1
bar.

Solution. 10% conversion corresponds to ξeq = 0.1. We use Eq. (5.320):

P = P ◦

(

16ξ2eq (1− ξeq)

(1− 3ξeq)
3 K

)1/2

= (1 bar)×
(

16× (0.1)2 × (1− 0.1)

(1− 3× 0.1)3 × (1.60× 10−4)

)1/2

= 51.2 bar

Note: Calculation of the equilibrium compositions of a reaction system that contains
two or more reactions is more complicated (results in many different equations
instead of just one). Furthermore the equations are non-linear, which typically
means that it is not possible to find analytic solutions. Numerical methods are the
only way to proceed in such case (i.e., computers).
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5.4 Calculation of equilibrium constants using standard
Gibbs energies of formation

In general ∆rG◦ can be determined in three different ways:

1. Determine the equilibrium constant K experimentally and use Eq. (5.302).

2. By using Eq. (5.304): ∆rG◦ = ∆rH◦ − T∆rS◦. with ∆rH◦ determined
calorimetrically and ∆rS◦ obtained from the third law of thermodynamics.

3. Statistical thermodynamics (theoretical approach).

Calculation of ∆rG◦ from the standard Gibbs energy of formation (∆fG
◦):

∆rG
◦ =

Ns∑

i=1

vi∆fG
◦
i with ∆fG

◦
i = ∆fH

◦
i − T



S̄◦
i +

∑

j 6=i

vj S̄
◦
j



 (5.321)

The entropy summation is over the elements that are required to form compound i.
∆fG

◦
i is the Gibbs energy for formation of species i. Note that at all temperatures

∆fG
◦(H+(aq)) = ∆fH

◦(H+(aq)) = S̄◦(H+(aq)) = 0.

First use the NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/)
to get the enthalpies of formation (∆rH◦

i ) and entropies (S◦
i ) and finally calculate

∆rG◦
i by using Eq. (5.321).

http://webbook.nist.gov/chemistry/
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Note: Even when ∆rH◦ is positive (i.e., endothermic reaction), ∆rS◦ may be suf-
ficiently large so that it overall produces negative Gibbs energy. Such reactions are
entropy driven.

Example. Calculate the standard Gibbs energy of formation for gaseous water
H2(g) +

1
2
O2(g) = H2O(g) given the following calorimetric data (T = 298.15 K):

∆fH
◦ (kJ mol−1) S◦ (J K−1 mol−1)

H2O(g) −241.8 188.8
H2(g) 0 130.7
O2(g) 0 205.1

Solution. Apply Eq. (5.321):

∆fG
◦(H2O) = ∆fH

◦(H2O(g))− T∆fS
◦(H2O(g)) = ∆fH

◦(H2O(g))

−T







S̄◦
H2O
−S̄◦

H2
− 1

2
S̄◦
O2

︸ ︷︷ ︸

=
∑

vjS
◦
j







=
(
−241.8 kJ mol−1

)
− (298.15 K)

×
{(

0.1888 kJ K−1 mol−1
)
−
(
0.1307 kJ K−1 mol−1

)
− 0.5

(
0.2051 kJ K−1 mol−1

)}

= −228.6 kJ mol−1

Note that the quantities with ∆f above are already per mole quantities and therefore
do not require use of overbars.
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Example. Calculate the equilibrium constants for the following reactions at the
indicated temperature:

a) 3O2(g) = 2O3(g) at 25 ◦C
b) CO(g) + 2H2(g) = CH3OH(g) at 500 K (∆fG

◦(CH3OH) = −134.3 kJ mol−1)

Solution. (a) First we have to calculate ∆fG
◦ using the values of ∆fH

◦ =

142.7 kJ mol−1 and ∆fS
◦ = S̄◦

O3
− 3

2
S̄◦
O2

= −68.8 J K−1 mol−1, which give

∆fG
◦(O3(g)) = ∆fH

◦(O3(g))−T∆fS
◦(O3(g)) = 163.2 kJ mol−1 (numerical val-

ues from the Chemistry WebBook). Note that the formation reaction for ozone is
3
2
O2(g)→ O3(g).

Then we use Eq. (5.321) to get ∆rG◦ (note that ∆fG
◦(O2(g)) = 0):

∆rG
◦ = 2∆fG

◦(O3(g))− 3∆fG
◦(O2(g)) = 326.4 kJ mol−1

Next apply Eq. (5.302) to get K:

K = exp

(

−∆rG◦

RT

)

= 6.62× 10−58

(b) First we have to calculate ∆fG
◦(CO(g)) at 500 K temperature. The formation

reaction for CO(g) is: C (graphite) + 1
2
O2(g) → CO(g). The required values can

be found from the Chemistry WebBook but note that the required values must
be at 500 K. For example, for CO at 500 K we get (graphite S̄◦ assumed to be
temperature independent):

S̄◦
CO(g) = 212.8 J mol−1 K−1, S̄◦

graphite = 5.6 J K−1mol−1
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S̄◦
O2(g)

= 220.8 J K−1 mol−1,∆fS
◦(CO(g)) =

(

212.8− 5.6− 1

2
× 220.8

)
J

K mol

= 96.8 J K−1 mol−1 at 500 K

The enthalpy at 500 K is ∆fH
◦(CO(g)) = −104.6 kJ mol−1, which results in

∆fG
◦(CO(g)) = −153.0 kJ mol−1. For CH3OH ∆fG

◦ at 500 K was given (this
could have been calculated using the heat capacity data given in the Chemistry
WebBook data). Now Eqs. (5.321) and (5.302) give:

∆rG
◦ = ∆fG

◦(CH3OH(g))− 2∆fG
◦(H2(g))

︸ ︷︷ ︸

=0

−∆fG
◦(CO(g))

=
(
−134.3 kJ mol−1

)
−
(
−153.0 kJ mol−1

)
= 18.7 kJ mol−1

K = exp

(

−∆rG◦

RT

)

= exp

(

− 18700 J mol−1

(
8.31 J K−1 mol−1

)
(500 K)

)

= 1.11× 10−2
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5.5 Effect of temperature on the equilibrium constant

The effect of temperature on chemical equilibrium is determined by ∆rH◦:

∆rH
◦ =

︸︷︷︸

Eq.(4.242)

−T 2

[
∂ (∆rG◦/T )

∂T

]

P

=
︸︷︷︸

Eq.(5.302)

RT 2

[
∂ (ln (K))

∂T

]

P

(5.322)

⇒
(
∂ (ln (K))

∂T

)

P

=
∆rH◦

RT 2
(van’t Hoff equation) (5.323)

For endothermic reactions the equilibrium constant increases as the temperature is
increased, but for an exothermic reactions the equilibrium constant decreases as the
temperature is increased. This means that endothermic (“requires heat”) reactions
are favored at higher temperature whereas exothermic (“releases heat”) are favored
at lower temperatures. The equilibrium shifts in direction where the reaction can
“consume” more heat.

If ∆rH◦ is independent of temperature, integration of Eq. (5.323) from T1 to T2

gives:

ln

(
K (T2)

K (T1)

)

=
∆rH◦ (T2 − T1)

RT1T2
(5.324)

where K (T1) and K (T2) are the equilibrium constants at T1 and T2, respectively.
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Note: If ∆rH◦ is independent of temperature, then ∆rC◦
P is zero (Eqs. (2.112) and

(2.140)). It will turn out later in Eq. (5.330) that since ∆rC◦
P is zero then ∆rS◦

is also independent of temperature.

By assuming ∆rC◦
P = 0 and combining Eqs. (5.302) and (5.304) we get:

∆rG
◦ = −RT ln (K) and ∆rG

◦ = ∆rH
◦ − T∆rS

◦ (5.325)

⇒ ln (K) = −∆rH◦

RT
+

∆rS◦

R

Because ∆rH◦ and ∆rS◦ were assumed to be independent of temperature, plotting
this function should yield a straight line (ln (K) vs. 1/T ).

Example. Calculate ∆rH◦ and ∆rS◦ for the reaction: N2(g) + O2(g) = 2NO(g).
Assume that ∆rC◦

P is zero. The following values for K were obtained experimen-
tally:

T (K) 1900 2000 2100 2200 2300 2400 2500 2600
K (×10−4) 2.31 4.08 6.86 11.0 16.9 25.1 36.0 50.3

Solution. Use Eq. (5.325) to obtain the slope and the intercept from a ln (K) vs.
1/T plot. This must be done by fitting Eq. (5.325) to the experimental data. From
the slope one can obtain ∆rH◦ by multiplying by −R and ∆rS◦ by multiplying
the intercept by R. The plot (data and fitting) is shown below.
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0.0004 0.00045 0.0005

1 / T (K
-1

)

-9

-8

-7

-6

-5

ln
(K

) Slope = −∆rH◦/R = −21.8× 103 K
Intercept = ∆rS◦/R = 3.08

The values for ∆rH◦ and ∆rS◦ can be now calculated:

∆rH
◦ = −slope×R = −

(
−21.9× 103 K

)
×
(
8.315 J K−1 mol−1

)
= 182 kJ mol−1

∆rS
◦ = intercept×R = (3.08)×

(
8.315 J K−1 mol−1

)
= 25.6 J K−1 mol−1

Note that the assumption of no temperature dependency in ∆rH◦ and ∆rS◦ ap-
pears to be a good one here. If this was not the case, the above plot would not yield
a straight line (because “the slope and intercept would depend on T”).

The standard reaction entropy ∆rS◦ indicates how much the entropy changes in a
reaction under standard conditions and at a given temperature. For a given reaction
it can be calculated by:

∆rS
◦ =

Ns∑

i=1

viS̄
◦
i (5.326)
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Example. Calculate the standard reaction entropies for the following reactions at
298 K by using the data in the Chemistry WebBook:

(a) H2(g) +
1
2
O2(g) = H2O(g)

(b) N2(g) + 3H2(g) = 2NH3(g)

Solution. Eq. (5.326) gives the following results:

(a) ∆rS
◦ = S̄◦

H2O(g) − S̄◦
H2(g)

− 1

2
S̄O2(g) =

(
69.95 J K−1 mol−1

)

−
(
130.68 J K−1 mol−1

)
− 1

2

(
205.15 J K−1 mol−1

)
= −163.33 J K−1 mol−1

(b) ∆rS
◦ = 2S̄◦

NH3(g)
− S̄◦

N2(g)
− 3S̄◦

H2(g)
= 2

(
192.77 J K−1 mol−1

)

−
(
191.61 J K−1 mol−1

)
− 3

(
130.68 J K−1 mol−1

)
= −198.11 J K−1 mol−1

In general, both ∆rH◦ and ∆rS◦ depend on temperature because the reaction heat
capacity depends on temperature. In Eqs. like (2.141) and (3.191) we have already
seen this kind of temperature dependency (note that ∆r and ∆f quantities are very
similar - one is for some given reaction and the other is for a formation reaction and
thus they behave exactly the same way). To summarize the results:
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∆fH
◦
i (T ) = ∆fH

◦
i (298.15 K) +

T∫

298.15 K

C̄◦
P,i(T

′)dT ′ (5.327)

S̄◦
i (T ) = S̄◦

i (298.15 K) +

T∫

298.15 K

C̄P,i(T
′)

T ′
dT ′ (5.328)

∆rH
◦(T ) = ∆rH

◦(298.15 K) +

T∫

298.15 K

∆rC
◦
P (T ′)dT ′ (5.329)

∆rS
◦(T ) = ∆rS

◦(298.15 K) +

T∫

298.15 K

∆rC◦
P (T ′)

T ′
dT ′ (5.330)

Remember also Eq. (2.139): ∆rH◦ =
Ns∑

i=1
vi∆fH

◦
i and ∆rS◦ =

Ns∑

i=1
vi∆fS

◦
i . Recall

also that C◦
P,i can be represented as power series in T .

The above results together with ∆rG◦(T ) = ∆rH◦(T ) − T∆rS◦(T ) can be used
for deriving an expression for ∆rG◦:

∆rG
◦(T ) = ∆rG

◦(298.15 K) +

T∫

298.15 K

∆rC
◦
P (T ′)dT ′ − T

T∫

298.15 K

∆rC◦
P (T ′)

T ′
dT ′

(5.331)
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Note that above ∆rG◦(298.15 K) must be interpreted as (T 6= 298.15 K!):

∆rG
◦(298.15 K) = ∆rH

◦(298.15 K)− T∆rS
◦(298.15 K)

Recall from Eq. (5.302) that ln (K) = −∆rG◦/RT and thus we get:

ln (K(T )) =
298.15 K

T
× ln (K(298.15 K))− 1

RT

T∫

298.15 K

∆rC
◦
P (T ′)dT ′ (5.332)

+
1

R

T∫

298.15 K

∆rC◦
P (T ′)

T ′
dT ′

However, calculation of the temperature dependency in K is rather tedious this way.
Numerical integration methods are a great help (i.e. using computers). Another
way is to integrate the Gibbs-Helmholtz Eq. (4.241). Also note that Eq. (5.332)
can be simplified if the reaction heat capacities are assumed to be independent of
temperature.
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5.6 Effect of pressure, initial composition, and inert
gases on the equilibrium composition

The effect of pressure

Consider a mixture of ideal gases where the partial pressure of is gas component i
can be written in terms of the molar fraction yi and the total pressure P : Pi = yiP .
Inserting this into Eq. (5.307) we get:

K =

Ns∏

i=1

(
Pi

P ◦

)vi

=

Ns∏

i=1

(
yiP

P ◦

)vi

=

Ns∏

i=1

(
P

P ◦

)vi Ns∏

i=1

y
vi
i (5.333)

=

(
P

P ◦

)v

Ky where v =

Ns∑

i=1

vi and Ky =

Ns∏

i=1

y
vi
i

Note that Ky depends on the molar fractions of the gas components and changes in
it imply changes in the molar fractions of the different components. Now consider
changes in the total pressure P at constant temperature and rewrite the previous
equation as:

Ky =

(
P

P ◦

)−v

K (5.334)
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Consider the following three cases:

1. v < 0: The total amount of moles of gas decreases in the reaction. According
to Eq. (5.334) Ky should increase as pressure increases. This means that
the products are favored over the reactants (i.e. balance shifts forward).

2. v > 0: The total amount of moles of gas increases in the reaction. According
to Eq. (5.334) Ky should decrease as pressure increases. This means that
the reactants are favored over the products (i.e. balance shifts backward).

3. v = 0: The total amount of moles of gas remains independent of pressure.
Thus changes in pressure do not change the molar fractions of the gases.

Notes:

1. This result reflects the Le Chatelier’s principle.

2. If the reactants and products are solids or liquids, the effect of pressure on
the equilibrium is small.

The effect of initial composition on equilibrium

First we write the molar fraction yi in terms of the extent of reaction ξ. The amount
of species i and the total amount of gas for a given ξ are given by:

ni(ξ) = ni,0 + viξ and ntot(ξ) = ntot,0 + vξ
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From these quantities yi can be calculated: yi(ξ) =
ni(ξ)

ntot(ξ)
=

ni,0+viξ

ntot,0+vξ

Inserting this into definition of Ky we get the following relation between Ky and ξ:

Ky =

Ns∏

i=1

y
vi
i =

Ns∏

i=1

(
ni,0 + viξ

ntot,0 + vξ

)vi

=

(
1

ntot,0 + vξ

)v

×
Ns∏

i=1

(ni,0 + viξ)
vi

(5.335)
By combining Eqs. (5.333) and (5.335), the equilibrium constant can be written as:

K =

(
P/P ◦

ntot,0 + vξ

)v

×
Ns∏

i=1

(ni,0 + viξ)
vi (5.336)

1. Consider addition of inert gas (i.e. one that does not take part in chemical
reaction) with temperature and volume constant. Remember that since the amount
of substance is not constant, we have four variables (P , V , T , and n) to consider.
The amount of inert gas added is denoted by ninert. The total amount of gas is
now given by ntot,0 + vξ + ninert and note that the inert component cancels out
from the product on the right in the equation above because it remains identical on
both sides of the chemical equation. The above equation now takes the following
form:
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K =

(
P/P ◦

ntot,0 + vξ + ninert

)v Ns∏

i=1

(ni,0 + viξ)
vi (5.337)

As temperature and volume are constants, it is instructive to rewrite Eq. (5.337)
in terms of these variables by using the ideal gas law:

K =





(

(ntot,0 + vξ + ninert)
RT
V

)

/P ◦

ntot,0 + vξ + ninert





v
Ns∏

i=1

(ni,0 + viξ)
vi (5.338)

=

(
RT

V P ◦

)v Ns∏

i=1

(ni,0 + viξ)
vi

Note that we had assumed that both T and V were constants, which means that
the right hand side above is independent of ninert. Therefore addition of inert gas
component to the reactive gas mixture does not change equilibrium if T and V are
kept constant during the addition (i.e. only the total pressure changes).
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2. Next consider addition of an inert gas with temperature and pressure kept
constant (note that V changes in this process). If ninert changes, the prefactor
in Eq. (5.337) changes as well. Since K = K(T ) and temperature is constant,
the product term in Eq. (5.337) (i.e., Ky) must counter balance the change. This
means that the mole fractions yi must take new values (i.e., the composition of the
gas mixture changes).

Summary:

v < 0: addition of inert gas shifts the balance in chemical equation to the left.
v = 0: addition of inert gas does not change the composition of the gas.
v > 0: addition of inert gas shifts the balance in chemical equation to the right.
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5.7 Equilibrium constants for gas reactions written in
terms of concentrations

Previously the equilibrium constants were written in terms of pressure. Now the
task is to express the equilibrium constant constant in terms of concentrations for
gas phase reactions.

KP = Equilibrium constant calculated using partial pressures.
Kc = Equilibrium constant calculated using concentrations.

Below we will show that usually KP 6= Kc and derive the relation between them.
First we note that partial pressures are related to concentrations ci by Pi,eq =
ni,eqRT/V = ci,eqRT and then Eq. (5.307) gives:

KP =

Ns∏

i=1

(
ciRT

P ◦

)vi

(5.339)

Next we introduce standard concentration denoted by c◦, which is 1 mol dm−3 and
insert this into Eq. (5.339):

KP =

Ns∏

i=1

[( ci

c◦

)( c◦RT

P ◦

)]vi

=

(
c◦RT

P ◦

)v Ns∏

i=1

( ci

c◦

)vi
=

(
c◦RT

P ◦

)v

Kc (5.340)

where v =
Ns∑

i=1
vi. Also Kc is defined as:

Kc =

Ns∏

i=1

( ci

c◦

)vi
(5.341)
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Note that Kc is also a function of temperature only (just like KP ).

Example. What is the value of the equilibrium constant Kc for the dissociation
of ethane into methyl radicals at 1000 K? The reaction is: C2H6(g) = 2CH3(g).
∆fG

◦(CH3) = 159.8 kJ mol−1 and ∆fG
◦(C2H6) = 109.6 kJ mol−1.

Solution. First we calculate ∆rG◦ by Eq. (5.321):

∆rG
◦ = 2∆fG

◦(CH3)−∆fG
◦(C2H6) = 2

(
159.8 kJ mol−1

)
−
(
109.6 kJ mol−1

)

= 210.1 kJ mol−1

Now Eq. (5.302) gives KP :

KP = exp

(

−∆rG◦

RT

)

= exp

( −210.1 kJ mol−1

(8.315× 10−3 kJ K−1 mol−1)(103 K)

)

= 1.062×10−11

Finally convert from KP to Kc by Eqs. (5.340) and (5.341):

Kc =
([CH3] /c◦)

2

[C2H6] /c◦
= KP

P ◦

c◦RT
=
(
1.062× 10−11

)

× 1 bar
(
1 mol L−1

) (
0.08315 L bar K−1 mol−1

)
(1000 K)

= 1.278× 10−13

Note that in above c◦ is required to get the right unit cancellation for Kc.
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5.8 Thermochemistry of heterogeneous reactions

A reaction involving more than one phase that does not involve equilibria of species
between phases is referred to as a heterogeneous reaction. For example the following
reactions are heterogeneous:

(1) CaCO3(s) = CaO(s) + CO2(g)

(2) CH4(g) = C(s) + 2H2(g)

Previously we have seen that pure gas phase reactions do not go to completion
essentially because of entropy of mixing. However, depending on the initial con-
ditions, heterogeneous reactions can proceed to completion. This can be seen by
writing the equilibrium constant for reactions (1) and (2) above:

KP =
PCO2

P ◦
(5.342)

KP =
P 2
H2

PCH4P
◦

(5.343)

The reason why solids do not need to be entered above, is that their activities are
very close to one up to moderate pressures. As such they do not contribute to the
equilibrium constant. Reaction (1) may go all the way to completion whereas reac-
tion (2) may not because there are gaseous products on both sides of the chemical
equation. From (5.60) we can distinguish two different cases for reaction (1):

1. The reaction will go to completion trying to satisfy Eq. (5.342) (may not get
that far).

2. The reaction will not go to completion and stops when Eq. (5.342) is
satisfied.
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5.9 Degrees of freedom and phase rule

In this section we will derive the Gibbs phase rule:

F = C − p+ 2 (5.344)

F = The total number of variables that must be used in specifying the system.
C = The number of components present in the system (“# of species - # of

reactions”: Ns −R).
p = The number of phases present in the system.

Justificaton:

Consider system with p phases. If a phase contains C components, its composition
may be specified by (C − 1) mole fractions (the remaining fraction can obtained
from the fact that their sum must equal to 1). The total number of variables for for
all the phases is given by p × (C − 1). In addition to these, one must also specify
two more variables (like P & T , V & P or V & T ). Thus up to this point we
can conclude that we at least have F = p × (C − 1) + 2. Next we consider phase
equilibria between p different phases. For phases α, β, γ, . . . we must have at
equilibrium µα,i = µβ,i = µγ,i = ... for each component i. Thus there are (p − 1)
such relationships for each component, which reduces the total number of required
variables by C(p− 1).

Finally, by summing the previous contributions, we get the Gibbs phase rule:

F = [p (C − 1) + 2]− C (p− 1) = C − p+ 2
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Example. The reaction CaCO3(s) = CaO(s) + CO2(g) is at equilibrium.

(a) How many degrees of freedom are there when all three compounds are
present at equilibrium?

(b) How many degrees of freedom are there when only CaCO3(s) and CO2(g)
are present?

Solution.

(a) The number of components: C = Ns −R = 3− 1 = 2. Three compounds
and one chemical reaction.
The number of phases: p = 2 (solid and gas).
The total number of variables needed: F = C − p+ 2 = 2.
Thus both temperature and pressure may be varied independently without
destroying a phase.

(b) C = Ns −R = 2− 0 = 2 (no reaction; R = 0).
p = 2 (solid & gas).
F = 2− 2 + 2 = 2. This is the same as in a) because the restriction due to
chemical reaction was removed but there is one component less. Both
temperature and pressure may be varied without destroying a phase.



Chapter 6: Phase equilibrium

“At constant temperature and pressure chemical potentials can be used to
understand stability of different phases.”
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6.1 Phase diagrams of one-component systems

Earlier we saw that plotting a P − V − T surface in three dimensions is difficult.
Furthermore we have seen (i.e., the Gibbs phase rule) that at maximum two vari-
ables are need to defined for describing a one-component system. Most commonly
P and T are chosen as variables when phase-diagrams are plotted.

Schematic phase diagram

of water

Phase diagram of helium

Phase diagram of CO2
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Note that along the phase boundary lines two phases exist in equilibrium. The
Gibbs phase rule now gives F = 1, which means that only one variable may be
specified independently. The boundary lines can be understood as functions and
as such they introduce a dependency between P and T (i.e. reduces F to 1). At
points where all three different phases exist at the same time (“triple point”) we
have F = 0 (i.e. they are just points in the graphs and both P and T are fixed).

What defines the phase boundaries?

Recall that at constant T and P the the equilibrium (i.e. dG = 0) between two
phases α and β is Eq. (4.259):

dG = µαdnα + µβdnβ = µαdn− µβdn = 0⇒ µα = µβ

In order to tell which phase is stable at given pressure and temperature, we must
calculate the chemical potentials for each phase and compare them. The phase
with the lowest chemical potential is stable. To obtain general statements about
stabilities of different phases, we must recall the following results (Eqs. (4.260) and
(4.261)):

− S̄ =

(
∂µ

∂T

)

P

(6.345)

V̄ =

(
∂µ

∂P

)

T

(6.346)

Remember that derivatives define slopes (here for the chemical potential µ).
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1. Dependency of µ on temperature

We will use Eq (6.345) above to predict the slopes for µ = µ(T ). Remember that S is
always non-negative, which means that µ(T ) must have a non-negative slope. From
our statistical interpretation of entropy can conclude that: S̄(solid) < S̄(liquid) <<
S̄(gas). Based on these results we can graph µ(T ) for each phase qualitatively.

The slopes of the lines are
given by −S̄solid, −S̄liquid and
−S̄gas.

Note that the entropy only
gives the slope. Also this
approximation assumes that
µ(T ) is a straight line.

Tm = melting temperature
Tb = boiling temperature
P = constant
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2. Dependency of µ on pressure

The previous Eq. (6.346) gives the slope for µ(P ) when temperature is constant.
The slope is equal to the molar volume, which is a non-negative quantity. The
molar volumes for different phases are known to follow: V̄solid < V̄liquid << V̄gas.
An exception to this rule is, for example, water, which we will consider separately.

The slopes of the lines are
given by the molar volumes for
the different phases. Note that
the molar volume only gives
the slope. Also this approxi-
mation assumes that µ(P ) is a
straight line.

Pm = melting pressure
Pb = boiling pressure
T = constant

If gas is compressed, it will first become liquid and upon more compression it will
eventually become a solid. At some given temperature a liquid can be made to boil
if the pressure is reduced accordingly. For example, vacuum distillation is based on
this principle.
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For water we have: V̄liquid < V̄solid << V̄gas

Here it turns out that the volume of the solid is larger than the liquid (the density
of liquid is higher than the solid). For this reason, for example, ice cubes stay on
top of water or water upon freezing expands and in nature this expansion process
can break even rocks. Most solids sink in the corresponding liquid because they
contract on freezing (i.e., the density increases).

The numbers in the graph re-
fer to different solid crystal
structures of water (i.e., ice).
If the temperature is fixed at
the dashed line and the ini-
tial pressure is zero then upon
icreasing the pressure we will
observe the following phases:
solid(I), liquid, solid(V) and fi-
nally solid(IV).

Other substances that expand when they freeze are: sulfuric acid, gallium, acetic
acid and silicon. For chemists this information is very useful in practical laboratory
work: if you freeze these materials in “fragile” containers, you may break the con-
tainer! The term fragility here refers to the ability of the container to withstand
expansion (e.g., quartz vs. normal glass).
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3. Combined effect of pressure and temperature

The combined effect of pressure and temperature is shown below by plotting µ(T )
vs. T at two different pressures (“high” and “low”):

Note the shift in Tm and Tb as a function of pressure. At higher P both Tm and Tb

increase.
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The previously discussed changes in phase are said to be first order phase transitions.
The first order refers to the fact the the chemical potential has discontinuous first
derivative with respect to pressure and temperature. For example dµ(P )/dP is
discontinuous at phase transitions:

Thus above on each side of the non-differentiable points, the substance has different
molar volumes. At transition points heat capacities also tend to approach infinity.
This can be understood qualitatively by inspecting Eqs. (2.100) and (2.112):

CV =
dqV

dT
and CP =

dqP

dT
⇒ ∆T =

qV

CV (T )
and ∆T =

qP

CP (T )
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At transition points all the supplied heat (q) is used for driving the phase transition
(i.e. the temeprature remains constant until the phase transition is complete).
According to the previous equations this can only happen if the heat capacities are
infinite at the transition points (∆T = 0, q > 0⇒ C →∞).

Example. A special case of phase transition occurs between two liquid phases He-I
and He-II (normal and superfluid 4He) at low temperatures. Due to the shape of
the transition, it is also called λ-transition (under saturated vapor pressure this
occurs at 2.17 K).
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In a second order phase transition (no heat involved in transition) the first derivative
of chemical potential is continuous but the second derivative has a discountinuity.
The heat capacity does not become infinite at these points but show only a discon-
tinuous jump. Behavior of various thermodynamic quantities at first and second
order transition points is shown below.

A) First order phase transition, B) Second order phase transition

Examples of 2nd order phase transitions are ferromagnetic, superconductor and
superfluid transitions. The classification scheme for phase transitions was proposed
by Paul Ehrenfest (1880 - 1933). Formally his classicication is not quite correct
and one should differentiate between the 1st and 2nd order phase transitions by the
involvement of heat exchange.
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6.2 The Clapeyron equation

Consider a one-component system with two phases. The
Gibbs phase rule is now: F = C − p + 2 = 1. At equilib-
rium the chemical potentials (i.e. the Gibbs energy energy at
constant P and T ) for both phases (denoted by α and β) must
be equal (see Eq. (4.259)):

µα = µβ (6.347)

Benoit Clapeyron,

French engineer

and physicist

(1799 - 1864).

If either P or T is changed one of the phases α or β will disappear. However, it is
possible to vary both P and T in such a way that both phases will remain (i.e. to
follow the phase boundary line in a phase diagram; phase boundary line = phase
coexistence curve).

If derivative dP/dT was known along the phase coexistence curve, it would be
possible to calculate, for example, how P must be changed if T is changed by
certain amount while preserving both phases. It turns out that this derivative is
given by the Clapeyron equation.

Clapeyron equation:

The phase equilibrium relation Eq. (6.347) must hold for any P and T along
the phase coexistence line. If the pressure and temperature are varied with the
restriction µα = µβ , we can also write dµα = dµβ .
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The Gibbs-Duhem equation (Eq. (4.272)) for both phases gives:

nαdµα − VαdP + SαdT = 0

nβdµβ − VβdP + SβdT = 0

Solving for dµ’s gives:

dµα = V̄αdP − S̄αdT

dµβ = V̄βdP − S̄βdT

Since dµα = dµβ , we get essentially the Clapeyron equation:

V̄αdP − S̄αdT = V̄βdP − S̄βdT (6.348)

This can be rewritten (using Eq. (3.176); ∆S = ∆H/T ) as:

dP

dT
=

S̄β − S̄α

V̄β − V̄α
=

∆S̄

∆V̄
=

∆H̄

T∆V̄
(6.349)

The deltas in this equation refer to differences in the values for the two phases.
This Clapeyron equation may be applied to vaporization, sublimation, fusion or the
transition between two solid phases of a pure substance.
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Example. What is the rate of change per Pascal (Pa) in the boiling point of water
at a 100 ◦C in atmospheric pressure? The molar enthalpy of vaporization is 40.69
kJ mol−1, the molar volume of liquid water is 0.019 × 10−3 m3 mol−1, and the
molar volume of steam is 30.199 × 10−3 m3 mol−1. All values are given at 100 ◦C
and 1.01325 bar.

Solution. Use the Clapeyron Eq. (6.349):

dP

dT
=

∆vapH

T
(
V̄g − V̄l

) =
40690 J mol−1

(373.15 K)
(
30.180× 10−3 m3 mol−1

) = 3613 Pa K−1

Finally use the reciprocal identity to obtain the rate:

dT

dP
=

(
dP

dT

)−1

=
1

3613 Pa K−1
= 2.76× 10−4 K Pa−1

Example. Calculate the change in pressure required to increase the freezing point
of water by 1 mK. At 273.15 K the heat of fusion of ice is 333.5 J g−1, the density
of water is 0.9998 g cm−3 (= g / mL = kg / L), and the density of ice is 0.9168 g
cm−3.

Solution. First we note that the molar volumes are given by the inverse of density:

V̄ =
1

ρ
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Therefore we get the molar volumes for the liquid and solid:

V̄l =
1

0.9998 g cm−3
= 1.0002 cm3 g−1 and V̄s =

1

0.9168 g cm−3
= 1.0908 cm3 g−1

Note that we have expressed everything in terms of grams rather than moles. If
molar volume would be needed in units of volume / mol then one should use the
molecular weight of the substance to convert. Provided that the molar quantities
of ∆H and ∆V are independent of temperature and pressure, we can integrate Eq.
(6.349):

dP =
∆fusH̄

T∆V̄
dT ⇒ ∆P =

∆fusH̄

∆V̄

Tf∫

Ti

dT

T
=

∆fusH̄

∆V̄
ln

(
Tf

Ti

)

≈ ∆fusH̄

∆V̄

(
Tf

Ti
− 1

)

≈ ∆fusH̄

∆V̄ Ti
×∆T

For a change of 1 mK both ∆fusH and the molar volumes are approximately
constant. In the present case Ti = 273.150 K (freezing point of water at ambient
pressure), ∆T = 0.001 K and Tf = 273.151 K. The task is now to find ∆P :

∆P =

(
333.5 J g−1

)
(0.001 K)

(−9.06× 10−8 m3 g−1) (273.15 K)
= −1.348× 104 Pa = −0.134 bar

Note that for water dP/dT < 0! This means that the phase boundary slope in the
phase diagram is negative. In most cases V̄ > 0 and dP/dT > 0.
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Example. Calculate the vapor pressure of H2O(l) at 298.15 K when the following
values are given: ∆fG

◦
298 K(H2O(g)) = −228.6 kJ mol−1 and ∆fG

◦
298 K(H2O(l))

= −237.1 kJ mol−1. Assume that the gases follow the ideal gas law.

Solution. Phase changes can be considered as “chemical reactions”:

H2O(l) = H2O(g)

Recall Eq. (5.302) and the definition of equilibrium constant Eq. (5.301):

∆rG
◦ = −RT ln (K) = −RT ln








a (H2O(g))

a (H2O(l))
︸ ︷︷ ︸

=1








= −RT ln (a (H2O(g)))

To get ∆rG◦ we use Eq. (5.321):

∆rG
◦ = ∆fG

◦ (H2O(g))−∆fG
◦ (H2O(l)) =

(
−228.6 kJ mol−1

)
−
(
−237.1 kJ mol−1

)

= 8.56 kJ mol−1

The ideal gas assumption with Eq. (5.301) and replacing the subsrcipt r with vap
(our “reaction” is vaporization):

∆vapG
◦ = −RT ln

(
PH2O(g)/P

◦
)
⇒ PH2O(g) = P ◦ exp

(

−∆vapG◦

RT

)
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PH2O(g) = (1 bar) exp

(

− 8560 J mol−1

(
8.3145 J K−1 mol−1

)
(298.15 K)

)

= 0.032 bar

Example. Calculate the equilibrium pressure for the conversion of graphite to
diamond at 25 ◦C. The densities of graphite and diamond may be taken to be 2.25
and 3.51 g cm−3, respectively, independent of pressure, in calculating the change
of ∆G with pressure.

Solution. Consider equilibrium reaction:

C(gra) = C(dia)

where ∆rG◦ = ∆fG
◦(dia)−∆fG

◦(gra) = (2900− 0) J/mol. Eq. (4.222) can now

be applied: ∆V̄ =
(

∂(∆rG)
∂P

)

T,n
. This can be integrated:

∆rG∫

∆rG◦

d(∆rG) =

P∫

P◦

∆V̄ dP

where ∆V̄ = V̄ (dia)−V̄ (gra). Integration of this equation leads to (∆P = P−P ◦):

∆rG = ∆rG
◦ +∆V̄∆P
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where ∆rG = 0 at equilibrium. Solving for ∆P gives:

∆P =
∆rG−∆rG◦

∆V̄
=

−2900 kJ/mol

−1.91× 10−6 m3/mol
= 1.52× 109 Pa

and the change in molar volume is obtained from:

V̄ =
(
12 g mol−1

)
(

1

3.51 g m−3
− 1

2.25 g m−3

)

×10−6 = −1.91×10−6 m3 mol−1

The required pressure is P = P 0+∆P ≈ 1.52×109 Pa. Since the temperature was
fixed at 25 ◦C, this much pressure must be applied in order to reach the two-phase
equilibrium (i.e., must be located on the phase boundary line).
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6.3 The Clausius-Clapeyron equation

For vaporization and sublimation processes Rudloph Clausius showed that the
Clapeyron equation may be simplified by assuming that the vapor phase obeys
the ideal gas law and the molar volume of the liquid (V̄l) is small in comparison
with the molar volume of the gas (V̄g). Substituting RT/P for V̄g , Eq. (6.349)
becomes:

dP

dT
≈ ∆vapH

TV̄g
=

P∆vapH

RT 2
(6.350)

By separating variables to the opposite sides of the equation, Eq. (6.350) becomes:

dP

P
=

∆vapH

RT 2
dT ⇒

P∫

P◦

dP

P
=

T2∫

T1

∆vapH

RT 2
dT (6.351)

If ∆vapH is assumed to be independent of temperature, we get:

ln

(
P

P ◦

)

=
∆vapH

R

T2∫

T1

T−2dT =
∆vapH

R

(
1

T1
− 1

T2

)

(6.352)

This can also be written as (indefinite integral):

ln (P ) = −∆vapH

RT
+ C where C is a constant (6.353)
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This shows that a plot of ln (P ) vs. 1/T should be a straight line. When P and
T are obtained from experiments, it is possible to extract ∆vapH◦ from the (P, T )
data. Such data is shown for water as an example below.

ln
(P
)

A linear fit gives ∆vapH◦ = 44.7 kJ mol−1 (literature value 44.0 kJ mol−1 at 298
K). Note that the above experiment gives an average value for this quantity over the
measurement temperature range as there is a small dependency on temperature.
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The Clausius-Clayperon equation can also be written as:

ln

(
P2

P1

)

=
∆vapH (T2 − T1)

RT1T2
=

∆vapH

R

(
1

T1
− 1

T2

)

(6.354)

The above derivations suffer from two approximations: 1) ∆vapH◦ was assumed to
be independent of temperature and 2) the gas phase was assumed to follow the ideal
gas law. The temperature dependency can be included in ∆vapH◦ approximately
by assuming the following form (not a very good approximation either):

∆vapH = A+BT + CT 2 (6.355)

If this is inserted into Eq. (6.351), we get:

dP

P
=

∆vapH

RT 2
dT =

1

R

(
A

T 2
+

B

T
+ C

)

dT (6.356)

Integration of this equation (without limits) gives the following result:

ln (P ) =
1

R

(

−A

T
+B ln (T ) + CT +D

)

(6.357)

where D is a constant of integration.
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To see how ∆vapH can be determined graphically, we integrate Eq. (6.351):

dP

P
=

∆vapH

RT 2
dT ⇒

P∫

P◦

dP

P
=

T∫

0

∆vapH

RT 2
dT

and differentiate both sides with respect to T :

d (ln (P/P ◦))

dT
=

∆vapH

RT 2
⇒ ∆vapH = RT 2 d (ln (P/P ◦))

dT

By using the chain rule and knowing that d(1/T )/dT = −1/T 2, we get:

d (ln (P/P ◦))

dT
=

d (1/T )

dT
× d (ln (P/P ◦))

d (1/T )
= − 1

T 2

d (ln (P/P ◦))

d (1/T )

and therefore we have:

∆vapH = −Rd (ln (P/P ◦))

d (1/T )
(6.358)

Notes:

◮ P above is the vapor pressure (the total external pressure is constant).

◮ The above form is particularly useful for onbtaining a graphical solution
because the plot of −R× d ((ln (P/P ◦)) /d (1/T ) gives ∆vapH (which may
or may not be constant).
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6.4 Vapor-liquid equilibrium of ideal binary liquid
mixtures

Task: To understand vapor-liquid equilibrium when two components are present in
a liquid. For example, when we have a mixture of benzene and toluene at a given
temperature, what is the vapor composition and the vapor pressure? This consid-
eration would be very important when separating these components by distillation.
In this section, we will assume that gases follow the ideal gas law although a more
general theory would have to use fugacities instead of partial pressures.

Consider a non-reactive binary component mixture of liquids. When the liquid and
vapor phases are in eqiulibrium, the chemical potentials for each component must
equal:

µ1(l) = µ1(g) and µ2(l) = µ2(g) (6.359)

For ideal gases the chemical potential for each component in the gas phase is given
by Eq. (5.300) with ai = Pi/P

◦:

µi(g) = µ◦
i (g) +RT ln

(
Pi

P ◦

)

where i = 1, 2 (6.360)

For the liquid phase components we have to use the general form (Eq. (4.255)):

µi(l) = µ◦
i (l) +RT ln (ai) (6.361)
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By combining the above equations:

µ◦
i (g) +RT ln

(
Pi

P ◦

)

= µ◦
i (l) +RT ln (ai) (6.362)

If this equation is written for a pure liquid i, it reads:

µ◦
i (g) +RT ln

(
P ∗
i

P ◦

)

= µ◦
i (l) (6.363)

where P ∗
i is the equilibrium vapor pressure of pure i. Subtract Eq. (6.363) from

(6.362) and we can rearrange the resulting equation as:

RT ln

(
Pi

P ∗
i

)

= RT ln(ai)⇒ ai =
Pi

P ∗
i

(6.364)

Thus, if the vapor follows the ideal gas law, the activity of a component in a solution
is given by the ratio of its partial pressure above the solution to the vapor pressure
of the pure liquid.

An experimental finding (Francois-Marie Raoult, 1830 - 1901):

Pi ≈ xiP
∗
i (Raoult’s law) (6.365)

where P ∗
i is the equilibrium pressure of pure liquid i and xi is its molar fraction in

liquid phase.
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This holds well when the components are chemically “similar”. An eample of chem-
ically similar compounds is given by a benzene/toluene mixture. The Raoult’s law
is demonstrated for this mixture below.

Chemical similarity: A and B
are “similar” if the molecu-
lar interactions between A –
A, A – B and B – B are
nearly identical. For the ben-
zene/toluene example, these
interactions are long-range van
der Waals forces.

Because the gas phase was assumed to be ideal, we can express the partial pressure
of a gas component i by multiplying the total gas pressure by the molar fraction in
the gas phase (yi):

Pi = yiP ≈ xiP
∗
i (6.366)

This lets us connect the molar fraction in the liquid phase (xi) to the gas phase
quantities.
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From Eq. (6.366) we can solve for xi (the liquid phase molar fraction):

xi = yi
P

P ∗
i

=
Pi

P ∗
i

(6.367)

Based on Eq. (6.364), the above is equal to activity ai:

ai = xi (6.368)

Now we have managed to get an expression for activity in the liquid phase by
considering the gas phase and the Raoult’s law. Inserting this into Eq. (6.21) gives:

µi(l) = µ◦
i (l) +RT ln (xi)

︸︷︷︸

=ai

(6.369)

Solutions for which Eq. (6.368) holds are called ideal solutions. Recall that yi is
the mole fraction in the gas phase and xi is the mole fraction in the liquid phase.
The total vapor pressure of an ideal binary mixture is given by:

P = P1 + P2 = x1P
∗
1 + x2P

∗
2 = P ∗

2 + (P ∗
1 − P ∗

2 )x1 (6.370)

Why is the total pressure line also called the “bubble point line”?

A liquid boils when its vapor pressure exceeds the external pressure. For example,
under normal conditions water boils at 100 ◦C because at that point its vapor
pressure is equal to the atmospheric pressure (1 atm). Boiling is seen as formation
of gas bubbles in the liquid. Consider the plot below where the total vapor pressure
is shown as a function of x1.
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If the external pressure would be below the
bubble point line, the liquid would start boil-
ing. In the opposite case, the liquid does not
boil.

The vapor composition of a binary solution can be calculated using Raoult’s law:

y1 =
P1

P1 + P2
=

x1P ∗
1

x1P ∗
1 + x2P ∗

2

=
x1P ∗

1

P ∗
2 +

(
P ∗
1 − P ∗

2

)
x1

(6.371)

This equation can be solved for x1:

x1 =
y1P ∗

2

P ∗
1 +

(
P ∗
2 − P ∗

1

)
y1

(6.372)

By eliminating x1 by using Eq. (6.366), we get:

P =
P ∗
1 P

∗
2

P ∗
1 +

(
P ∗
2 − P ∗

1

)
y1

(6.373)
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This function is plotted below (i.e., total pressure vs. molar fraction in the gas
phase) for benzene/toluene solution:

At external pressures below the dew point line
the binary mixture exists as a two-component
gas. Above this line liquid starts to form.

P ∗
1 = Vapor pressure of pure toluene.

P ∗
2 = Vapor pressure of pure benzene.

Liquid and vapor compositions for ben-
zene/toluene mixture is shown. Note that the
x-axis might be somewhat confusing: it is used
for two different variables x1 and y1. This does
not mean that they would be equal! Variable
x1 corresponds to the top straight line and y1
for the lower curve. A tie line (dashed line)
connects x1 and y1 at a given total pressure
P . In the pressure ranges from P ∗

1 to P ∗
2 , the

system may exist in liquid-gas phase equilib-
rium with a given x1 and y1.
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Example. At 60 ◦C the vapor pressures of pure benzene and toluene are 0.513
and 0.185 bar, respectively. What are the equations of the bubble point and dew
point lines? For a solution with 0.60 mole fraction of toluene, what are the partial
pressures of toluene and benzene, and what is the mole fraction of toluene in the
vapor? Assume ideal solutions.

Solution. Denote toluene by 1 and benzene by 2. The bubble point line is given
by Eq. (6.370):

P (x1) = P ∗
2 + (P ∗

1 − P ∗
2 )x1 = 0.513 bar− (0.328 bar)x1

The dew point line is given by Eq. (6.373):

P (y1) =
P ∗
1 P

∗
2

P ∗
1 +

(
P ∗
2 − P ∗

1

)
y1

=
0.0949 bar2

0.185 bar− (0.328 bar) y1

With 0.60 mole fraction of toluene, the partial pressures are given by Eq. (6.365):

P1 = x1P
∗
1 = 0.60× (0.185 bar) = 0.111 bar

P2 = x2P
∗
2 = 0.40× (0.513 bar) = 0.205 bar

From the above bubble point line equation with x1 = 0.60, we get:

P = 0.513 bar− (0.328 bar)× (0.60) = 0.316 bar
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Eq. (6.371) relates y1 and x1 to each other and hence:

y1 =
x1P ∗

1

P ∗
2 +

(
P ∗
1 − P ∗

2

)
x1

=
0.60× (0.185 bar)

0.513 bar− (0.328 bar)× 0.60
= 0.351

Example. Calculate the activities of toluene (component 1) and benzene (compo-
nent 2) in the liquid by using the values given in the previous example. Assume
ideal solutions.

Solution. Use Eq. (6.364):

a1 =
P1

P ∗
1

= 0.600 and a2 =
P2

P ∗
2

= 0.400

Note that we assumed an ideal solution, the activities are equal to the mole fractions.

Thermodynamic quantities of ideal solutions

In ideal solutions the activities are given by Eq. (6.369): µi(l) = µ◦
i (l)+RT ln (xi).

The molar Gibbs energy of a solution at constant T and P is given by Eq. (4.225):

Ḡ =

Ns∑

i=1

µi
ni

n
=

Ns∑

i=1

µixi
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Inserting the chemical potential expression in above, we get (constant T and P ):

Ḡ =

Ns∑

i=1

xiµi =

Ns∑

i=1

xiµ
◦
i +RT

Ns∑

i=1

xi ln (xi) (6.374)

Note that this expression gives the molar Gibbs energy as a function of pressure and
temperature. Thus this expression contains all of the thermodynamic information
about an ideal solution.

The molar entropy of an ideal solution can be obtained using Eqs. (4.221) and
(4.227):

S̄ = −
(
∂Ḡ

∂T

)

P

= −
Ns∑

i=1

xi

(
∂µ◦

i

∂T

)

P

−R

Ns∑

i=1

xi ln (xi) =

Ns∑

i=1

xiS
◦
i −R

Ns∑

i=1

xi ln (xi)

(6.375)
The molar enthalpy of an ideal solution can be calculated by using the Gibbs-
Helmholtz equation (using Eqs. (4.241), (4.227) with Ḡ◦

i = µ◦
i , and Ḡ◦

i = H̄◦
i −

T S̄◦
i ):

H̄ = −T 2

[

∂
(
Ḡ/T

)

∂T

]

P,{ni}

= −T 2
Ns∑

i=1

[

xi
∂
(
µ◦
i /T

)

∂T

]

= −T 2
Ns∑

i=1

[

xi

(
1

T

∂µ◦
i

∂T
− µ◦

i

T 2

)]

(6.376)

=

Ns∑

i=1

xi

(

−T ∂µ◦
i

∂T
+ µ◦

i

)

=

Ns∑

i=1

xi

(
T S̄◦

i + Ḡ◦
i

)
=

Ns∑

i=1

xiH̄
◦
i
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The molar volume is obtained from Eq. (4.222):

V̄ =

(
∂Ḡ

∂P

)

T,{ni}

=






∂







∑

xi

=µi−µ◦
i (6.369)

︷ ︸︸ ︷

RT ln(xi)






/∂P







=
∑

xi (∂µi/∂P ) =

Ns∑

i=1

xiV̄i

(6.377)
Remember above that µ◦

i does not depend on pressure - only on temperature.

The first terms (with superscripts ◦) in Eqs. (6.374) and (6.375) give the thermo-
dynamic properties of isolated species (i.e. no mixing) and the possible second term
the effect of mixing:

∆mixG = RT

Ns∑

i=1

xi ln (xi) (6.378)

∆mixS = −R
Ns∑

i=1

xi ln (xi) (6.379)

∆mixH = 0 (6.380)

∆mixV = 0 (6.381)

These results are essentially the same as we obtained earlier for ideal gas mxitures.
Note that there is no volume change or heat evolution when ideal solutions are
formed under constant temperature and pressure.



278

The effect of temperature on ideal binary liquid mixtures at constant pressure

Consider toluene (1) - benzene (2) mixture at atmospheric pressure (units in bar):

80.1 ◦C 88 ◦C 90 ◦C 94 ◦C 98 ◦C 100 ◦C 104 ◦C 110.6 ◦C
P ∗
1 – 0.508 0.543 0.616 0.698 0.742 0.836 1.013

P ∗
2 1.013 1.285 1.361 1.526 1.705 1.800 2.004 –

The boiling points for pure liquids were underlined above. Vapor pressures for pure
liquids can be determined experimentally.

Example. Calculate the liquid mole fraction (x1) of toluene in benzene-toluene
solution that boils at 100 ◦C. Calculate also the toluene mole fraction (y1) in the
vapor above the liquid.

Solution. We use Eq. (6.370) and solve for x1, recall that a liquid boils when
its vapor pressure reaches the external pressure (one atmosphere here) and use the
above table:

x1 =
P − P ∗

2

P ∗
1 − P ∗

2

=
(1.013 bar)− (1.800 bar)

(0.742 bar)− (1.800 bar)
= 0.744

By knowing x1, we can further use Eq. (6.366) to get y1:

y1 =
x1P ∗

1

P
=

0.744× (0.742 bar)

1.013 bar
= 0.545



279

Example. The method of fractional distillation can be understood in the previously
developed theory. Consider a binary ideal mixture with components A and B. In
this example component A (i.e., the volatile component) has a lower boiling point
than B.

1. Consider a solution with mole fraction
xA,1 of A.

2. Heat the solution to its boiling point
T2. The liquid mole fraction is now
xA,2.

3. Extract vapor, which has mole fraction
yA,2. Note that there is more of the
volatile component in the gas phase
than in the liquid.

Repeat the above cycle for the liquid, which
was condensed from the gas phase above. The
next step is shown as xA,3 and yA,3. By re-
peating the cycle, a better separation of the
components can be reached.
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6.5 Vapor pressure of nonideal mixtures

In the previous section we assumed that Raoult’s law holds (Eq. (6.365)). However,
in many cases significant deviations from this law are found:

Liquid mixture with a negative
azeotrope. (1) chloroform and (2)
acetone at 35.17 ◦C. Note that the
bubble point and the dew point lines
overlap. The dashed line shows the
results from Raoult’s law.

Liquid mixture with a positive
azeotrope. (1) carbon disulfide and
(2) acetone at 35.17 ◦C.

The points where the bubble point and dew point lines cross, are called azeotropic
points. In this case distillation can not separate the components!
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What is the origin of the deviation from the Raoult’s law?

This extra binding interaction lowers the vapor pressure from that predicted by the
Raoult’s law. The maximum effect is seen when there are equal amounts of the
components (i.e. the middle of the bubble point line on previous slide).

A positive trend (i.e. the bubble point line is above the Raoult’s law prediction)
is observed when A – A and B – B interactions are stronger than A – B. Here A
and B are the components forming the binary mixture. If these deviations are large
enough, the system separates into two phases A and B.

Henry’s law attempts to fix the deficiency of the Raoult’s at small mole fractions,
which are close to zero or one (i.e. nearly one component solutions). It consists of
the following linear approximation:

Pi = Kixi (6.382)

where Ki is Henry’s law constant for component i. Its value can be obtained from
plotting the ratio Pi/xi when xi approaches zero.
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Behavior of the partial pressures as a function of xi (the liquid phase mole fraction)
is shown below for Henry’s law, Raoult’s law and the experimental data (continuous
line):

Henry’s law constants given in Pascals (25
◦C).

Gas Water Benzene
H2 7.12 × 109 0.367 × 109

N2 8.68 × 109 0.239 × 109

O2 4.40 × 109 –
CO 5.79 × 109 0.163 × 109

CO2 0.167 × 109 0.0114 × 109

CH4 4.19 × 109 0.0569 × 109

C2H2 0.135 × 109 –
C2H4 1.16 × 109 –
C2H6 3.07 × 109 –

The most common application of Henry’s law is to calculate solubilities of gases in
liquids. In this case the amounts of dissolved gas is very small, which means that
its molar fraction in the liquid is small.

Example. Use the Henry’s law constant, calculate the solubility of carbon dioxide
in water at 25 ◦C in moles per liter at a partial pressure of CO2 over the solution
of 1 bar. Assume that 1 L of solution contains approximately 1000 g of water.
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Solution. We apply Henry’s law (Eq. (6.382)). Denote water by component 1 and
CO2 by component 2. The partial pressure of CO2 in the gas phase was given as:
P2 = 105 Pa. Now Eq. (6.382) gives:

x2 =
P2

K2
=

105 Pa

0.167× 109 Pa
= 6.0× 10−4

By the definition of mole fraction, we have:

x2 =
[CO2]

[CO2] + [H2O]
≈ [CO2]

[H2O]

⇒ [CO2] = x2 [H2O] =
(
6.0× 10−4

)
×
(
55.5 mol L−1

)
= 3.3× 10−2 mol L−1

Notes:

◮ The solubility of a gas in liquids usually decreases with increasing
temperature because heat is generally evolved in the solvation process.

◮ There are exceptions to this - especially with solvents like liquid ammonia,
molten silver and some organic liquids.

◮ Solubility of an unreactive gas in a liquid is due to intermolecular attractive
forces (van der Waals forces) between gas molecules and solvent molecules.

◮ Addition of electrolytes (i.e. ionic species) usually decreases solubility of
gases in liquids (“salting out”).
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If the vapor pressure of a solute follows Henry’s law, then we can insert Eq. (6.382)
into Eq. (6.360):

µi(g) = µ◦
i (g) +RT ln

(
Kixi

P ◦

)

(6.383)

At equilibrium µi(g) = µi(l) (see Eq. (6.359)) and expanding the logarithm gives:

µi(l) = µ◦
i (g) +RT ln

(
Ki

P ◦

)

︸ ︷︷ ︸

=µ∗
i (l)

+RT ln (xi) = µ∗
i (l) +RT ln (xi) (6.384)

where we introduced the standard chemical potential for species i in the liquid:

µ∗
i (l) = µ◦

i (g) +RT ln

(
Ki

P ◦

)

(6.385)

Note that the above standard state is hypothetical because it corresponds to xi = 1
for the solute but it is still taken to be dilute solution. Even as such, this state
is useful as a reference. For this reason, dilute solutions are not the same as ideal
solutions.
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6.6 Activity coefficients

It is covenient to relate activity to liquid mole fraction:

ai = γixi (6.386)

where γi is the activity coefficient for species i. With this notation, Eq. (6.361)
reads:

µi(l) = µ◦
i (l) +RT ln (γixi) (6.387)

Note that when xi → 1 then γi → 1 because it approaches a pure liquid. For
positive deviations from Raoult’s law, γi > 1 and γi < 1 for negative deviations.
Combining Eqs. (6.364) and (6.386) we have:

ai = γixi =
Pi

P ∗
i

(6.388)

From this expression, we can calculate the activity coefficient by using experimental
data:

γi =
Pi

xiP ∗
i

(6.389)

For ideal gases we have Pi = yiP and the above equation can be written in this
case:

γi =
yiP

xiP ∗
i

(6.390)

Above the activity coefficient is written with reference to Raoult’s law.
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Activity coefficients can also be expressed with reference to Henry’s law. To see
this, we first express the activity as a product of the activity coefficient (denoted by
prime to differentiate it from the activity coefficient with Raoult’s law reference):

µi(l) = µ∗
i (l) +RT ln

(
γ′
ixi

)
(6.391)

By combining Eqs. (6.359) and (6.360) we get:

µi(l) = µ◦
i (g) +RT ln

(
Pi

P ◦

)

(6.392)

Next recall Eq. (6.385): µ∗
i (l) = µ◦

i (g) +RT ln
(

Ki
P◦

)

By substituting the above two expressions into Eq. (6.391), the following modified
form for Henry’s law can be obtained:

Pi = γ′
iKixi (6.393)

This allows us to calculate the activity coefficient γ′
i:

γ′
i =

Pi

xiKi
→ 1 when xi → 0 (6.394)

Since Pi = yiP , this can also be written as:

γ′
i =

yiP

xiKi
(6.395)
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What is the principal difference between γi and γ′
i?

γi (Raoult’s law reference) has a reference state, which consists of an ideal solution.
The chemical potential corresponding to this standard state is denoted by µ◦

i .

γ′
i (Henry’s law reference) has a reference state, where each molecule of the solute

has the same interactions that it experiences in very dilute solutions. The chemical
potential corresponding to this standard state is denoted by µ∗

i .

Thus the only difference is that they have different references states.

Example. Calculate the activity coefficients γi for ether (component 1) and acetone
(component 2) in 1:1 ether-acetone solutions at 30 ◦C. The experimental data are
given in the table below.

Table. Activity coefficients for acetone-ether solutions at 30 ◦C. 1 = ether, 2 =
acetone. Pressure is given in kPa.

Raoult’s law reference Henry’s law reference
x2 P1 x1P ∗

1 γ1 P2 x2P ∗
2 γ2 K2x2 γ′

2
0 86.1 86.1 1.0 0 0 – 0 1.00
0.2 71.3 68.9 1.04 12.0 7.5 1.60 15.7 0.77
0.4 58.7 51.7 1.14 19.7 15.1 1.31 31.4 0.63
0.5 52.1 43.1 1.21 22.4 18.9 1.19 39.2 0.57
0.6 44.3 34.4 1.28 25.3 22.7 1.12 47.0 0.54
0.8 26.9 17.3 1.56 31.3 30.1 1.04 62.7 0.50
1.0 0 0 – 37.7 37.7 1.00 78.4 0.48
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Solution. At 0.5 mole fraction, the activity coefficients of the two components are
given by:

γ1 =
P1

x1P ∗
1

=
52.1 kPa

43.1 kPa
= 1.21

γ2 =
P2

x2P ∗
2

=
22.4 kPa

18.9 kPa
= 1.19

Note that the Henry’s law activity coefficient γ′
i can be calculated from the data

given in the previous table by extrapolating to x2 = 0 when calculating K2 = P2/x2

(see Eq. (6.382)).

What is the relation between γi and γ′
i?

According to Eq. (6.364) the activity of a real solution is given by ai = Pi/P
∗
i .

Substitution of Eq. (6.394) there gives:

ai =
γ′
iKixi

P ∗
i

(6.396)
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With ai = γixi this gives:

γi =
γ′
iKi

P ∗
i

or γ′
i =

γiP
∗
i

Ki
(6.397)

Notes:

◮ For dilute solutions, the solvent is usually treated on the basis of deviations
from Raoult’s law and the solute is usually treated on the basis of deviations
from Henry’s law.

◮ Three different concentration scales can be used with Henry’s law:
Pi = Kimi where mi is the molal concentration of i (mol / kg of solvent),
Pi = Kici where ci is the molar concentration of i (mol / L of solution), or
Pi = Kixi where xi is the (liquid) molar fraction.

◮ Since we mostly calculate differences in a given thermodynamic variable, the
reference (= standard) state usualy cancels out. However, both initial and
final states must be expressed with respect to the same reference state.
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6.7 Colligative properties

Colligative properties: depression of freezing point, elevation of boiling point, os-
motic pressure, and the lowering of the vapor pressure by a non-volatile solute.

The depression of freezing point

Consider an ideal mixture of solvent A and solute B (i.e. A is in excess of B). The
phase equilibrium between solid A and liquid A is given by Eqs. (6.359) and (6.361)
(also note that for solids µ◦ = µ and for ideal solutions ai = xi):

µ◦
A(s, T ) = µA(s, T ) = µA(l, T ) = µ◦

A +RT ln (aA) = µ◦
A +RT ln (xA) (6.398)

Solving for ln (xA) we get:

ln (xA) =
µ◦
A(s, T )− µ◦

A(l, T )

RT
= −∆fusG

◦
A(l, T )

RT
(6.399)

where ∆fusG
◦
A is the Gibbs energy of fusion at temperature T .
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Next we assume that ∆fusH
◦ and ∆fusS

◦ are independent of temperature near
the freezing point of A (Eq. (3.176) and constant P ):

∆fusG
◦
A = ∆fusH

◦
A−T∆fusS

◦
A = ∆fusH

◦
A−T

(
∆fusH

◦
A

Tfus,A

)

= ∆fusH
◦
A

(

1− T

Tfus,A

)

(6.400)
When this is substituted into Eq. (6.399), we have:

ln (xA) = −
(
∆fusH

◦
A

R

)(
1

T
− 1

Tfus,A

)

= −
(
∆fusH

◦
A

R

)(
Tfus,A − T

Tfus,AT

)

(6.401)
Next we relate xA to xB by xA = 1− xB (also T ≈ Tfus,A):

ln (xA) = ln (1− xB) ≈ −
∆fusH

◦
A

RT 2
fus,A

×
(
Tfus,A − T

)

︸ ︷︷ ︸

=∆Tf

= −∆fusH
◦
A∆Tf

RT 2
fus,A

(6.402)

This expression can be approximated by using the Taylor expansion of ln (1− x):
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ln (1− x) = −x− 1

2
x2 − 1

3
x3 − ... when − 1 < x < 1 (6.403)

≈ −x when higher order terms are ignored. Here x ≈ 0

With this approximation, Eq. (6.402) can be written as:

∆Tf =

(
RT 2

fus,A

∆fusH
◦
A

)

xB (6.404)

Where ∆Tf indicates the change (i.e., depression) in freezing point. In this context
the concentration is often given in terms of molal concentrations m (i.e., moles of
solute per kg of solvent; not mass here!) and M in kg mol−1. The relationship
between molal concentration and mole fraction for B is:

xB =
nB

nA + nB
=

nB/(MAnA)

(nA + nB)/(MAnA)
=

mB

1/MA +mB
≈ mBMA (6.405)

where MA is the molar mass of A. The last approximation applies to dilute solu-
tion. Substitution of Eq. (6.405) into (6.404) gives (Kf is called the freezing point
constant):

∆Tf =
RT 2

fus,AMAmB

∆fusH
◦
A

= KfmB with Kf =
RT 2

fus,AMA

∆fusH
◦
A

(6.406)
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The elevation of boiling point

By using analogous approach to obtain the depression of freezing point, we can
obtain the following expressions for the elevation of boiling point:

∆Tb =
RT 2

vap,A

∆vapH◦
A

xB = KbmB where Kb =
RT 2

vap,AMA

∆vapH◦
A

(6.407)

Example. Denote the solvent by A and the solute by B. Derive an expression for
the molar mass of B in terms of (Kb, ∆Tb) or (Kf , ∆Tf ). Assume that the mass of
B dissolved in A and the total weight of the solution are given and that the solution
is dilute in B.

Solution. Since the solution is dilute in B, we have approximately mass(A) ≈
mass(A + B), where mass(A) is the mass of solvent A (kg) and mass(A + B) is
the mass of the solution containing both A and B. Since mB = “moles of solute
molecules dissolved” / “the total mass of the solvent”, we can write:

mB =
nB

mass(A)
≈ nB

mass(A + B)

On the other hand we have:

∆Tb = KbmB or ∆Tf = KfmB
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By combining the above equations, we get:

nB =
∆Tf

Kf
×mass(A + B) or nB =

∆Tb

Kb
×mass(A + B)

⇒ M.W. of B =
mass(B)

nB
=

Kf

∆Tf
× mass(B)

mass(A + B)
in units of kg mol−1

This allows for determination of the molecular mass of B experimentally provided
that the constantsKf (aka. cryoscopic constant) orKb (aka. ebullioscopic constant)
are known. Their values for few selected solvents are shown below.

Table. Cryoscopic and equlliscopic constants for selected solvents.

Solvent Kf (K kg mol−1) Kb (K kg mol−1)
Benzene 5.12 2.53
Camphor 40 –
Phenol 7.27 3.04
Water 1.86 0.51
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6.8 Two-component systems consisting of solid and
liquid phases

When a solid solute (A) is left in contact with a solvent (B), it dissolves until
the solution is saturated. In this case saturation is a state of equilibrium with the
undissolved solute in equilibrium with the dissolved solute. Therefore, in a saturated
solution the chemical potential of the pure solid solute (µA(s, T )) and the chemical
potential of A in solution (µA(l, T )) are equal. The derivation below is essentially
the same as given earlier in Eqs. (6.398) through (6.401).

By using Eq. (6.369), we can write for A:

µA(l, T ) = µ◦
A(l, T ) +RT ln (xA)

Because there is equiblirum between the solid and dissolved forms of A, we have:

µA(l, T ) = µA(s, T )

Furthermore, pure solids have chemical potential equal to that of standard state:

µA(s, T ) = µ◦
A(s, T )⇒ µA(l, T ) = µ◦

A(s, T )

Inserting this into the first equation, we get:

µ◦
A(s, T ) = µ◦

A(l, T ) +RT ln (xA)
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If we solve for ln (xA), the expression becomes (with G = H − TS):

ln (xA) =
µ◦
A(s, T )− µ◦

A(l, T )

RT
= −∆fusG

◦
A

RT
= −∆fusH

◦
A

RT
+

∆fusS
◦
A

R

Note that above ◦ refers to the standard state of A (1 bar pressure and pure solute).

At constant P and T , we can use Eq. (3.176) and replace ∆fusS:

∆fusSA◦ =
∆fusH

◦
A

Tfus,A
⇒ ln (xA) = −∆fusH

◦
A

RT
+

∆fusH
◦
A

RTfus,A

⇒ ln (xA) = −∆fusH
◦
A

R

(
1

T
− 1

Tfus,A

)

Solving for xA gives:

xA = exp

(

−∆fusH
◦
A

R

(
1

T
− 1

TA,fus

))

(6.408)

This expression gives the solubility of A in B as a function of temperature when
∆fusH

◦
A is known.



Chapter 7: Electrochemical equilibrium

“An understanding of the conversion of chemical energy to electrical energy is
important for work with batteries, fuel cells, electroplating, corrosion,

electrorefining and electroanalytical techniques”.
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7.1 Coulomb’s law, electric field, and electric potential

The force ~f between two point charges (denoted by 1 and 2) is given by the
Coulomb’s law:

~f =
1

4πǫ0ǫr

Q1Q2

r2
~r (7.409)

where:
r = distance between the charges
Q1 = charge of particle 1
Q2 = charge of particle 2
ǫ0 = permittivity of vacuum (constant; 8.854 187 817 × 10−12 C2 N−1 m−2)
ǫr = relative permittivity (dielectric constant) of the material (solid, gas, etc.)
~r = unit vector connecting charges 1 and 2.

When only the magnitude of the force is considered, the above equation becomes:

f =
Q1Q2

4πǫ0ǫrr2
(7.410)

The electric field strength at point 1 is given by the ratio between force and the
charge Q1:

~E =
~f

Q1
(7.411)
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For each well behaved vector field (i.e. conservative) there is a potential φ such
that:

~E = −~∇φ (7.412)

Note that here φ = φ(x, y, z) and E is a vector-field with components (Ex(x, y, z),

Ey(x, y, z), Ez(x, y, z)). Gradient (~∇) is an example of a vector operator:

~∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Example. Calculate the gradient vector for function f(x, y, z) = x2 + y2 + z2 and
find the point where the length of the gradient vector becomes zero.

Solution. Calculate the partial derivatives of f with respect to x, y and z:

∂f

∂x
= 2x,

∂f

∂y
= 2y,

∂f

∂z
= 2z

⇒ ~∇f = (2x, 2y, 2z) . When x = 0, y = 0, z = 0, then
∣
∣
∣ ~∇f

∣
∣
∣ = 0.

Note that function f has its (global) minimum at this point.
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Definition of 1 Volt (V): In presence of the electric field (from Q2), the difference
between the electric potential at two points is equal to the work per unit charge
required to move a charged test particle from one point to the other. Thus 1 V = 1
J C−1. The choice of zero potential is arbitrary but is usually chosen to correspond
to infinite separation of charges.

The electric potential φ at point r is the work required to bring a unit positive
charge from infinity to r. Combining Eqs. (7.409) and (7.412) and integrating from
infinity to r gives:

φ(r) = − Q2

4πǫ0ǫr

r∫

∞

dr′

r′2
=

Q2

4πǫ0ǫrr
(7.413)

In electrolyte solutions we have electroneutrality condition:

NP∑

i=1

nizi = 0 (7.414)

where NP is the number of phases, ni is the amount of ions in phase i and zi× e is
the charge of ions (e = charge of one proton; 1.6022 × 10−19 C). The charge zi is
positive for cations and negative for anions. For a phase to have a non-zero electric
potential, there must be a small deviation from Eq. (7.414) but these deviations
are small and we can still say that it holds (to good approximation).
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7.2 Equilibria involving potential differences

Recall Eq. (2.95): dw = φdQ (φ = potential, dQ = differential charge)

Recall Eq. (4.220): dG = −SdT + V dP +
Ns∑

i=1
µ′
idni +

Ns∑

i=1
φidQi

The change in total charge Q is given by:

dQi = ziFdni (7.415)

where zi is the charge of species i, F is the Faraday constant (F = NA×e; 96485.309
C mol−1), dni is the change in the number of ions (mol) and φi is the electric poten-
tial of the phase containing species i. The prime on the chemical potential signifies
the fact that it is the pure chemical potential (i.e., not including the electrical work).
Note that zi is dimensionless where dQ has units of C.

By combining Eqs. (4.220) and (7.415) we get:

dG = −SdT+V dP+

Ns∑

i=1

µ′
idni+F

Ns∑

i=1

ziφidni = −SdT+V dP+

Ns∑

i=1

(
µ′
i + Fziφi

)

︸ ︷︷ ︸

≡µi

dni

(7.416)
This means that the chemical potential µi can be taken to contain the electrical
work as well:

µi = µ′
i + ziFφi (7.417)

The equilibrium condition Eq. (6.347) still applies: µi(α) = µi(β) for species i and
phases α and β.
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7.3 Equation for an electrochemical cell

Galvanic cells: Electrochemical cells where chemical reactions occur spontaneously.

Examples of galvanic cells: Zn/MnO2 and Zn/Ag2O3 cells used in watches etc.;
H2/O2 fuel cell used in spacecrafts.

Electrolytic cells: Electrochemical cells where a chemical reaction is driven by an
external potential difference.

Examples of electrolytic cells: Pb/PbO2/H2SO4 cell used in automobile batteries
etc.; commercial production of chlorine and aluminum; electrorefining of copper.

Cathode is the electrode where the reduction occurs:

Ox+ ne− = Red (7.418)

Anode is the electrode where the oxidation occurs:

Red = Ox+ ne− (7.419)

In galvanic cell: + = Cathode (reduction) and − = Anode (oxidation).
In electrolytic cell: + = Anode (oxidation) and − = Cathode (reduction).
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Determination of the potential difference between two electrodes by a potentiometer.

a) Galvanic cell : the external potential V (battery + variable resistor) is less
than the cell potential E. The process is spontaneous (i.e. proceeds without
the help from the battery).

b) Equilibrium: the external potential V ′ (battery + variable resistor) is equal
to the cell potential E. Note that now no current flows in the system.

c) Electrolytic cell : the external potential V ′′ (battery + variable resistor) is
greater than the cell potential E. The process is nonspontaneous (i.e. driven
by the battery).

Notes:

◮ Voltage is the energy difference per charge (electron) (V = J / C).

◮ Current is the number of charged particles (electrons) flowing per second (A
= C / s). Since V = J / C then e× V (eV for short) is an unit energy
(electron volts).
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Cells without junctions:

Galvanic cell without junction.

Examples:

Pt(s) | H2(g) | HCl(aq) | AgCl(s) | Ag(s)
Pt(s) | H2(g) | HCl(aq) | Cl2(g) | Pt(s)

Cells with liquid junctions:

Galvanic cell with junction (Daniel

cell).

Examples:

Zn(s) | Zn+2 (aq) : Cu+2 (aq) | Cu(s)

Zn(s) | Zn+2 (aq) : Zn+2 (aq) | Zn(s)
Ag(s) | AgCl(s) | Cl−(aq) :: Ag+(aq) | Ag(s)

: = liquid junction
:: = salt bridge
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An example of liquid junction:

Daniel cell with a diaphragm.

The liquid compartments have been
separated by a diaphragm, which lets only
the ions through but does not let the two
solutions to mix.

An example of salt bridge:

Galvanic cell with junction (Daniel

cell).

The liquid compartments have been
separated by a salt bridge, which lets only
the ions through but does not let the two
solutions to mix. The bridge can be a U-tube
filled with NaCl electrolyte, for example.
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The electromotive force (EMF) of a cell is denoted by E (V) and it is defined by:

P =
d (−wel)

dt
= EI (7.420)

where wel is the electrical work done by the system (negative), P is the rate at
which chemical energy is converted to electrical energy (W) and I is the current
(A).

Task: What is the relation between the electromotive force in a cell and the chemical
potentials (or ion activities) in the cell?

To do this, lets consider an example (L = left, R = right):

PtL | H2(g) | HCl(aq) | AgCl(s) | Ag(s) | PtR
Note that the convention is that reduction takes place on the right elec-

trode and oxidation occurs in the left electrode.

The electrode reactions are:

2AgCl(s) + 2e−(PtR) = 2Ag(s) + 2Cl−(aq) (reduction) (7.421)

H2(g) = 2H+(aq) + 2e−(PtL) (oxidation) (7.422)

By combining the above, we get:

H2(g) + 2AgCl(s) + 2e−(PtR) = 2H+(aq) + 2Cl−(aq)
︸ ︷︷ ︸

2HCl(aq)

+2Ag(s) + 2e−(PtL)
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Consider a cell without any external connections to the electrode (see, for example,
the previous galvanic cell without liquid junction example; i.e. open circuit). For
such a system in equilibrium, we must have (similar to Eq. (6.347)):

2µ(HCl, aq) + 2µ(Ag, s) + 2µ(e−,PtL) = µ(H2, g) + 2µ(AgCl, s) + 2µ(e−,PtR)
(7.423)

Each chemical potential here is given by Eq. (7.417): µi = µ′
i + ziFφi

For all neutral species (HCl, Ag, H2, AgCl) µi = µ′
i because zi = 0.

Right electrode: µ(e−,PtR) = µ′(e−,PtR)− FφR

Left electrode: µ(e−,PtL) = µ′(e−,PtL)− FφL

Now µ′
i(e

−,PtR) = µ′
i(e

−,PtL). To see this, consider that the left and right elec-
trodes are in contact (i.e. φL = φR) and we have equilibrium µi(e

−,PtR) =
µi(e

−,PtL). By considering the above two equations with these conditions, we get
µ′
i(e

−,PtR) = µ′
i(e

−,PtL).

By plugging these results into Eq. (7.423), we get:

2µ(HCl, aq) + 2µ(Ag, s)− 2FφL = µ(H2, g) + 2µ(AgCl, s)− 2FφR (7.424)

or 2µ(HCl, aq) + 2µ(Ag, s)− µ(H2, g)− 2µ(AgCl, s) = 2F (φL − φR)

For a “normal” chemical reaction (H2(g) + 2AgCl(s) = 2HCl(aq) + 2Ag(s)), we
would have:
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∆rG = 2µ(HCl, aq) + 2µ(Ag, s)− µ(H2, g)− 2µ(AgCl, s)

By combining this with Eq. (7.424), we get:

∆rG = −2F (φR − φL) = −2FE with E = φR − φL (7.425)

Note that E is considered here in the limit of zero current. Since ∆rG depends on
pressure and temperature, the cell potential difference depends on P and T as well.
Also the concentration of HCl affects the the potential difference.

Although the above derivation applies only to a special case, it is clear that the
general equation corresponding to Eq. (7.425) is:

∆rG = − |ve|FE (7.426)

where ve is the number of electrons transferred (“charge number”). Note that
when the right-hand side electrode has a more positive potential than the left-hand
electrode, the electromotive force E for the cell is positive. If E is positive, ∆rG
is negative (Eq. (7.426)) and the cell reaction is spontaneous at constant P and T .
According to Eq. (7.425) this occurs when φR > φL.

By combining Eqs. (5.297) and (4.255) with (7.426), we get:

− |ve|FE = ∆rG =

Ns∑

i=1

viµ
◦
i

︸ ︷︷ ︸

≡−|ve|FE◦

+RT

Ns∑

i=1

vi ln (ai) = − |ve|FE◦ +RT ln





Ns∏

i=1

a
vi
i





(7.427)
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where E◦ is the standard electromotive force of the cell (i.e. the EMF when the
activities of all components are one).

Eq. (7.427) is called the Nernst equation and is usually written as (Q = reaction
quotient):

E = E◦ − RT

|ve|F
ln





Ns∏

i=1

avsi





Eq.(5.303)
︷︸︸︷
= E◦ − RT

|ve|F
ln(Q) (7.428)

At 25 ◦C this can be written:

E = E◦ −
(
8.3145 J K−1 mol−1

)
(298.15 K)

|ve|
(
96485 C mol−1

) ln(Q) = E◦ − 0.02569

|ve|
ln(Q) (7.429)

At equilibrium no electrons flow between the electrodes (i.e. E = 0) and we have:

E◦ =
RT

|ve|F
ln(K) or K = exp

( |ve|FE◦

RT

)

(7.430)

where K is the equilibrium constant for the cell reaction.
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Example. Three different galvanic cells have standard EMFs E◦ of 0.01, 0.1 and
1.0 V at 25 ◦C. Calculate the equilibrium constants of the reactions that occur in
these cells assuming the charge number |ve| for each reaction is unity.

Solution. Use Eq. (7.430) to get the equilibrium constants:

K(0.01 V) = exp

( (
96485 C mol−1

)
(0.01 V)

(
8.3145 J K−1 mol−1

)
(298.15 K)

)

= 1.476

K(0.1 V) = 49.0

K(1.0 V) = 8.02× 1016

Example. Fuel cell is an electrochemical cell, which
typically uses O2 and H2 gas to produce electricity.
Note that this approach provides higher efficiency than
just a simple combustion process involving O2/H2

where the heat release reduces the amount of work
obtainable from the system (the first law of thermo-
dynamics).
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7.4 Activity of electrolytes

Electrolytes have to be treated in a different way from nonelectrolytes because they
dissociate. However, the ions cannot be studied separately because the condition of
electric neutrality applies.

For electrolyte solutions, it is customary to use the molal scale (instead of molar).
The unit of molality is mol kg−1 (for molarity mol L−1). Conversion between the
systems can be carried out by multiplication / division by the solvent density (kg
L−1). Note that molality does not change as a function of temperature whereas
molarity usually does.

On the molality scale, the activity of a solute is given by (compare with Eq. (6.386)):

ai =
γimi

m◦
(7.431)

where ai denotes activity, γi activity coefficient, mi molality and m◦ standard
molality (1 mol / kg of solvent). For dilute solutions we have:

lim
mi→0

γi = 1 (7.432)

Addition of an infinitely small amount of an electrolyte to one kg of solvent, yields
a small change in the Gibbs energy:
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dG = µ+dm+ + µ−dm− (7.433)

Note that we cannot add cations or anions separately, we always get both when an
electrolyte is added to the solvent.

Electrolyte Substance that dissolves to give an ionically conducting solution.
Non-electrolyte Substance that dissolves to give a solution that does not conduct

electricity.
Strong electrolyte Substance that dissolves completely, or almost completely to

given an ionically conducting solution.
Weak electrolyte Substrance that dissolves only to a small degree.

Consider a strong electrolyte Av+Bv− where v+ is the number of cations and v− is
the number of anions. The overall electroneutrality condition for the solution gives:

m =
m+

v+
=

m−

v−
(7.434)

Inserting this into Eq. (7.433) gives:

dG = (v+µ+ + v−µ−) dm = µdm (7.435)

where µ = v+µ+ + v−µ−

Here µ is the chemical potential for the electrolyte, which can be determined exper-
imentally.
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Note: In the following we will omit the standard state value m◦ from expressions.
This results in simplified expressions but it will give inconsistent units! For example,
mi/m

◦ becomes now just mi.

The chemical potentials for cation and anion are given by:

µ+ = µ◦
+ +RT ln (γ+m+) (µ◦

+ std state chemical potential for cation) (7.436)

µ− = µ◦
− +RT ln (γ−m−) (µ◦

− std state chemical potential for anion) (7.437)

Combining Eqs. (7.436) and (7.437) gives:

µ =
(
v+µ◦

+ + v−µ◦
−

)
+RT ln

(

γ
v+
+ γ

v−
− m

v+
+ m

v−
−

)

(7.438)

To make the logarithm argument proportional to m, we define the mean ionic
molality m± and the mean ionic activity coefficient γ± (with help of Eq. (7.434)):

m± =
(

m
v+
+ m

v−
−

)1/v±
= m

(

v
v+
+ v

v−
−

)1/v±
(7.439)

γ± =
(

γ
v+
+ γ

v−
−

)1/v±
(7.440)

v± = v+ + v− (7.441)

Using these definitions we can rewrite Eq. (7.438) as:
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µ = µ◦ + v±RT ln (γ±m±) (7.442)

with aAv+
Bv−

= (γ±m±)v± = γ
v±
± mv±

(

v
v+
+ v

v−
−

)

where Av+Bv− is the electrolyte activity. The standard chemical potential µ◦ of
the electrolyte is the chemical potential in a solution of unit activity on the molality
scale.

Examples. What are the mean ionic molalities m± of NaCl, CaCl2, CuSO4 and
LaCl3?

Solution. NaCl: 1 - 1 electrolyte and hence Eq. (7.439) gives m± = m. Here m is
the molality of the electrolyte.

CaCl2: 1 – 2 electrolyte and hence Eq. (7.439) gives m± = 41/3m.
CuSO4: 1 – 1 electrolyte and hence Eq. (7.439) gives m± = m.
LaCl3: 1 – 3 electrolyte and hence Eq. (7.439) gives m± = 271/4m.
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7.5 Debye-Hückel theory

Electrolytes containing multiply charged ions (for example, Cu2+) have greater
effect on the activity constants of ions than singly charged ions (for example, H+).
To account for this, we define ionic strength I (G. N. Lewis):

I =
1

2

Ns∑

i=1

miz
2
i =

1

2

(
m1z

2
1 +m2z

2
2 + ...+mNsz

2
Ns

)
(7.443)

where mi is molality of ion i and zi is charge for ion i in units of |e| (signed quantity).

Why is the activity of ions reduced in a solution?

Note that because the Coulomb interaction has long range, it is nearly impossible
to prepare dilute electrolytic solutions.
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In 1923 Peter Debye and Erich Hückel were able to show that for dilute solutions
the activity coefficient γi of ion i with a charge number zi is given by (for details,
see Phys. Z. 24:185, 305 (1923)):

Peter Debye, Dutch

chemist (1884 - 1966),

Nobel prize 1936.

Erich Hückel, German

chemist (1896 - 1980).

log (γi) = −Az2i
√
I (7.444)

where I is the ionic strength given by Eq. (7.443) and:

A =
1

2.303

(
2πNAmsolv

V

)1/2 ( e2

4πǫ0ǫrkT

)3/2

(7.445)

Here msolv is the mass of solvent in volume V and ǫr is the
relative permittivity of the solvent, NA is Avogadro’s num-
ber (6.022137 × 1023 molecules / mol), e is the electron
charge (1.6021773 × 10−19 C), ǫ0 is the vacuum permittiv-
ity (8.8541878 × 10−12 As V−1 m−1).

To take the mean of ion activities, we first take logarithm of
Eq. (7.440):

log (γ±) =
1

v+ + v−
(v+ log (γ+) + v− log (γ−)) (7.446)

Substitution of Eq. (7.444) into (7.446) gives:

log (γ±) = −A
(
v+z2+ + v−z2−

v+ + v−

)
√
I (7.447)
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By using the total charge neutrality v+z+ = −v−z−, we get:

log (γ±) = Az+z−
√
I (7.448)

where z has the sign corresponding to the ion.

Example. Use the Debye-Hückel theory to calculate γ+, γ−, γ± and aNaCl for
0.001 molal sodium chloride in water at 25 ◦C. Density of water is about 0.997 kg
L−1. The relative permittivity of H2O at this temperature is 78.54.

Solution. Eqs. (7.443), (7.444) and (7.445) give:

A =
1

2.303

(
2πNAmsolv

V

)1/2 ( e2

4πǫ0ǫrkT

)3/2

=
1

2.303

(

2π
(
6.022× 1023 mol−1

)
(997 kg)

(1.000 m3)

)1/2

×
( (

1.602× 10−19 C
)2

4π
(
8.854× 10−12 AsV−1m−1

)
(78.54)

(
1.3861× 10−23JK−1

)
(298.2 K)

)3/2

= 0.509 kg1/2mol−1/2

I =
1

2

((
0.001 mol kg−1

)
× (−1)2 +

(
0.001 mol kg−1

)
× (1)2

)

= 0.001 mol kg−1

log (γ+) = log (γ−) = −Az2+
√
I = −Az2−

√
I = −

(

0.509 kg1/2mol−1/2
)

× (±1)2
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×
√

0.001 mol kg−1 = −1.610× 10−2 ⇒ γ+ = γ− = 0.964

Next Eq. (7.448) yields:

log (γ±) = Az+z−
√
I =

(

0.509 kg1/2 mol−1/2
)

× (1)× (−1)× (0.001)1/2

⇒ γ± = (γ+γ−)1/2 = 0.964

aNaCl = m2γ2
± = (0.0012)(0.964)2 = 9.29× 10−7

Note: The Debye-Hückel law, Eq (7.444), works well up to ionic strengths about
0.01. However, large deviations between experiment and Eq. (7.444) are observed
already at this ionic strength when ions have high charges (greater than 4). This is
because Eq. (7.444) is an approximate result.

At high ionic strengths the following empirical relation is often useful (extended
Debye-Hückel equation):

log (γ±) =
Az+z−

√
I

1 +B
√
I

(7.449)

or log (γi) =
Az2i
√
I

1 +B
√
I

where B = 1.6 kg1/2mol−1/2 at 25 ◦C.
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Determination of activity coefficients using an electrochemical cell:

Consider the following reaction:

1

2
H2(g) + AgCl(s) = HCl(aq) + Ag(s)

The charge number in this reaction is one and the EMF is given by Eq. (7.428):

E = E◦ − RT

F
ln

(

aHCl
√

PH2/P
◦

)

(7.450)

where we have assumed H2 to be an ideal gas. If the pressure of hydrogen is 1 bar
and Eq. (7.442) is introduced, we get:

E = E◦ − 2.303RT

F
log
(
γ2
±m2

)
= E◦ − 0.05916 log

(
γ2
±m2

)
(7.451)

where γ± is the HCl mean ionic activity and m is HCl molality. The last step was
obtained at 25 ◦C.

Eq. (7.451) contains two unknowns, but they can be determined from a series mea-
surements of the cell EMF with different HCl molalities. Rearranging Eq. (7.451)
gives:
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E + 0.1183 log (m) = E◦ − 0.1183 log (γ±) (7.452)

Plotting E + 0.1183 log(m) against m and extrapolating to infinitely dilute HCl
solution (i.e., m → 0 and γ± → 1) gives an experimental estimate for E◦. This
equation can be combined with the extended Debye-Hückel law to give better results
at higher ionic strengths. After determining E◦, Eq. (7.452) can be directly used
to obtain γ±.

Table. Mean ionic activity coefficients γ± in water at 25 ◦C.

m (mol kg−1) HCl LiCl NaCl CsCl
0.01 0.905 0.904 0.902 0.899
0.02 0.875 0.873 0.870 0.865
0.05 0.830 0.825 0.820 0.807
0.10 0.796 0.790 0.778 0.756
0.20 0.767 0.757 0.735 0.718
0.40 0.755 0.740 0.693 0.628
1.0 0.809 0.774 0.657 0.544
2.0 1.009 0.921 0.668 0.495
3.0 1.316 1.156 0.714 0.478
4.0 1.762 1.510 0.783 0.473
5.0 2.38 2.02 0.874 0.474

In general, if activity coefficient is greater than one, positive deviation from Raoult’s
law occurs (A-A/B-B interaction stronger than A-B), otherwise negative deviation
occurs (A-B stronger than A-A/B-B).
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7.6 Determination of standard thermodynamic
properties of ions

According to Eq. (7.430) the standard EMF (E◦) can be determined from:

∆rG
◦ = − |ve|FE◦ = −RT ln(K) (7.453)

If we consider reaction:

1

2
H2(g) + AgCl(s) = HCl(aq) + Ag(s)

The equilibrium constant for this reaction is given by:

K = exp

( (
96485 C mol−1

)
(0.2224 V)

(
8.3145 J K−1mol−1

)
(298.15 K)

)

= 5745 (7.454)

K =
aHCl

√
PH2/P

◦
(H2 ideal gas)

If the standard EMF of a cell is measured as a function of temperature, then ∆rS◦,
∆rH◦ and ∆rC◦

P can be calculated using the following relations (see Eqs. (2.112),
(4.221), H = G+ TS, and (7.453)):
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∆rS
◦ = |ve|F

(
∂E◦

∂T

)

P

(7.455)

∆rH
◦ = − |ve|FE◦ + |ve|FT

(
∂E◦

∂T

)

P

(7.456)

∆rC
◦
P = |ve|FT

(
∂2E◦

∂T 2

)

P

(7.457)

Notes:

1. These standard thermodynamic properties have been expressed with respect
to a hypothetical standard state where the electrolyte has molality of 1 mol
kg−1 and the interactions for the resulting ions correspond to infinite dilution.
For example, the true activity of 1 mol kg−1 HCl solution is less than 1.

2. The standard thermodynamic properties have been tabulated (see the NIST
online database). The standard state for strong electrolytes is assumed to
consists of completely ionized (for example, HCl, NaCl, etc.). For weak elec-
trolytes, usually two different standard states are given: fully ionized and
un-ionized (not dissociated).

3. The experiments can not measure individual ions separately (electroneutrality
condition). However, by using a convention: ∆fG

◦(H+) = ∆fH
◦(H+) = 0,

the properties of other ions can be calculated.

4. For strong electrolytes the standard Gibbs energy of formation can be ob-
tained by summing the corresponding formation energies for the ions.
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Example. Calculate the standard molar entropy of chloride ion in aqueous solution
at 298.15 K starting with the Gibbs energy of formation (−131.23 kJ mol−1) and
the enthalpy of formation (−167.16 kJ mol−1). S̄◦(H2(g)) = 130.68 J/(K mol) and
S̄◦ = 223.07 J/(K mol).

Solution. By using ”G = H − TS“ we can calculate ∆fS
◦:

∆fS
◦(Cl−) =

∆fH
◦(Cl−)−∆fG(Cl−)

T
=

(
−167.16 kJ mol−1

)
−
(
−131.23 kJ mol−1

)

298.15 K

= −120.51 J K−1 mol−1

Consider the following reaction: 1
2
Cl2(g) + e− = Cl−(aq)

Now we can write: ∆f S̄
◦(Cl−) = S̄◦(Cl−)− 1

2
S̄◦(Cl2)− S̄◦(e−)

where S̄◦(e−) = 1/2× S̄◦ (H2(g)) because 2e− + 2H+ = H2. Thus we can write:

S̄◦(Cl−) = ∆f S̄
◦
(
Cl−

)
+

1

2
S̄◦ (Cl2) + S̄◦

(
e−
)
=
(
−120.51 J K−1 mol−1

)

+

((
223.08 J K−1mol−1

)

2

)

+

((
130.68 J K−1 mol−1

)

2

)

= 56.36 J K−1 mol−1
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It should be remembered that the tabulated data (e.g. the NIST database) gives the
properties in the limit of zero ionic strength. At higher ionic strengths the extended
Debye-Hückel law must be used. Some quantitative expressions are as follows:

∆fG
◦
i (I) = ∆fG

◦
i (I → 0)−RT ln (γi) (7.458)

∆fH
◦(I) = −T 2

[

∂
(
∆fG

◦
i (I)/T

)

∂T

]

P

(7.459)

∆rG◦ and ∆rH◦ can be obtained by using the above expressions and Eqs. (2.139)
and (5.321).
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7.7 Standard electrode potentials

Standard electrode potentials can be used to calculate the EMF of a given elec-
trochemical cell. The standard electrode potential of a cell can be obtained with
hydrogen electrode on the left and all components at unit activity. For example:

1

2
H2(g) + AgCl(s) = HCl(aq) + Ag(s)

which can be measured to be 0.2224 V. Also the hydrogen electrode contribution is
taken to be (arbitrarily) zero:

H+(aq) + e− =
1

2
H2(g) with E◦ = 0 V

Thus the only contribution to the cell potential is only from the reaction:

AgCl(s) + e− = Ag(s) + Cl−(aq) with E◦ = 0.2224 V

Note that these reactions are written as reduction reactions and therefore E◦ can
also be called reduction potential. A brief listing of various standard electrode
potentials are given in the following table:
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Table. Standard electrode potentials at 25 ◦C.

Electrode E◦ (V) Electrode reaction

F− | F2(g) | Pt 2.87 (1/2) F2(g) + e− = F−

Au3+ | Au 1.50 (1/3) Au3+ + e− = Au

Pb2+ | PbO2 | Pb 1.455 (1/2) PbO2 + 2H+ + e− = (1/2)Pb2+ + H2O

Cl− | Cl2(g) | Pt 1.3604 (1/2) Cl2(g) + e− = Cl−

H+ | O2(g) | Pt 1.2288 H+ + (1/4)O2(g) + e− = (1/2)H2O

Ag+ | Ag 0.7992 Ag+ + e− = Ag

Fe3+,Fe2+ | Pt 0.771 Fe3+ + e− = Fe2+

I− | I2(s) | Pt 0.5355 (1/2)I2 + e− = I−

Cu+ | Cu 0.521 Cu+ + e− = Cu

OH− | O2(g) | Pt 0.4009 (1/4) O2(g) + (1/2)H2O + e− = OH−

Cu2+ | Cu 0.3394 (1/2) Cu2+ + e− = (1/2)Cu+

Cl− | Hg2Cl2(s) | Hg 0.268 (1/2) Hg2Cl2 + e− = Hg + Cl−

Cl− | AgCl(s) | Ag 0.2224 AgCl + e− = Ag + Cl−

Cu2+, Cu+ | Pt 0.153 Cu2+ + e− = Cu+

Br− | AgBr(s) | Ag 0.0732 AgBr + e− = Ag + Br−

H+ | H2(g) | Pt 0.0000 H+ + e− = (1/2)H2

D+ | D2(g) | Pt −0.0034 D+ + e− = (1/2)D2

Pb2+ | Pb −0.126 (1/2) Pb2+ + e− = (1/2)Pb

Sn2+ | Sn −0.140 (1/2) Sn2+ + e− = (1/2)Sn

Ni2+ | Ni −0.250 (1/2) Ni2+ + e− = (1/2)Ni

Cd2+ | Cd −0.4022 (1/2) Cd2+ + e− = (1/2)Cd

Fe2+ | Fe −0.440 (1/2) Fe2+ + e− = (1/2)Fe

Zn2+ | Zn −0.763 (1/2) Zn2+ + e− = (1/2)Zn

OH− | H2(g) | Pt −0.8279 H2O + e− = (1/2)H2(g) + OH−

Mg2+ | Mg −2.37 (1/2) Mg2+ + e− = (1/2)Mg

Na+ | Na −2.714 Na+ + e− = Na

Li+ | Li −3.045 Li+ + e− = Li
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The cell EMF E can now be expressed as a difference between the right and left
electrode potentials:

E = ER − EL and E◦ = E◦
R − E◦

L (7.460)

Note that given the data in the previous table, it is now possible to use the Nernst
Eq. (7.428) to obtain E for a cell when the concentrations or partial pressures are
given. Furthermore, the table data indicates the polarities for the electrodes and
can be used for obtaining the equilibrium constants (K) via Eq. (7.430).

Rules for using the table data:

1. The half-cell reactions are written as reduction reactions. Consider, for
example, a cell consisting of Pt | H2(g) | HCl(aq) | Cl2(g) | Pt. The half-cell
reactions are:

Right: Cl2(g) + 2e− = 2Cl− with E◦
R = 1.3604 V

Left: 2H+ + 2e− = H2(g) with E◦
L = 0.0000 V

2. Both reactions must be written with the same number of electrons. Note
that E◦ does not depend on |ve|.

3. The standard EMF for the cell (E◦) is obtained by using Eq. (7.460). In the
above example this gives E◦ = 1.3604 V− 0.0000 V = 1.3604 V. The overall
reactions is:

H2(g) + Cl2(g) = 2H+ + 2Cl− with E◦ = 1.3604 V
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4. If, under the standard condition, the standard EMF is positive, the reaction
will spontaneously go from left to right. In this case the right electrode is
positive (+) and the left electrode negative (−) when the cell is operated as
a galvanic cell.

5. If, under the standard condition, the standard EMF is negative, the reaction
will spontaneously go from right to left. In this case the right electrode is
negative (−) and the left electrode positive (+) when the cell is operated as
an electrolytic cell.

6. The equilibrium constant for the cell can be obtained by using Eq. (7.430).

7. The cell EMF under non-standard condition can be obtained by using the
Nernst equation (Eq. (7.428)). Note that if the cell has a liquid junction,
the Nernst equation must be written in terms of ion species (see the
following example).

Example. Consider the following galvanic cell: Zn(s) | Zn2+ :: Cu2+ | Cu(s)
where :: denotes a liquid junction (T = 298.15 K). Assume that Cu2+ and Zn2+

have identical ionic strengths on both sides of the liquid junction.
(a) What is the cell reaction?
(b) What is the standard EMF for the cell?
(c) What is the value of the equilibrium constant?
(d) What is the expression for the equilibrium constant in terms of ion concentra-
tions?

Solution. Parts a) and b). The electrode reactions are:
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Right electrode: Cu2+ + 2e− = Cu(s) E◦
R = 0.339 V

Left electrode: Zn2+ + 2e− = Zn(s) E◦
L = −0.763 V

Overall reaction: Zn(s) + Cu2+ = Zn2+ +Cu(s) E◦ = E◦
R − E◦

L =
0.339 V− (−0.763 V) = 1.102V

Thus Zn is oxidized (left) and Cu2+ is reduced (right).

Part c.

Eq. (7.430) gives:

K = exp

( |ve|FE◦

RT

)

= exp

(

2
(
96485 C mol−1

)
(1.102 V)

(
8.3145 J K−1 mol−1

)
(298.15 K)

)

= 1.80× 1037

Part d. Solids have activities of one and hence (using Eqs. (7.431) and (7.444)):

K =
a
(
Zn2+

)
a (Cu(s))

a
(
Cu2+

)
a (Zn(s))

=
a
(
Zn2+

)

a
(
Cu2+

) =
γ
(
Zn2+

)
m
(
Zn2+

)

γ
(
Cu2+

)
m
(
Cu2+

) ≈
[
Zn2+

]

[
Cu2+

]
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Example. Demonstrate with the Cu/Cu+/Cu2+ sequence that the value for E◦ for
the reaction Cu2+ + 2e− → Cu (E◦

1 = +0.339 V; reaction #1) cannot be obtained
simply by summing the E◦ values from reactions Cu+ + e− → Cu (E◦

2 = +0.521
V; reaction #2) and Cu2+ + e− → Cu+ (E◦

3 = +0.153 V; reaction #3).

Solution. The correct way to proceed is to consider the standard reaction Gibbs
energies (∆rG◦):

Reaction 1 (|ve| = 2): ∆rG◦
1 = − |ve|FE◦ = −0.678× F

Reaction 2 (|ve| = 1): ∆rG◦
2 = − |ve|FE◦ = −0.521× F

Reaction 3 (|ve| = 1): ∆rG◦
3 = − |ve|FE◦ = −0.153× F

Thus ∆rG◦
1 = ∆rG◦

2 +∆rG◦
3 but E◦

1 6= E◦
2 + E◦

3 .
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Notes:

1. If the solvent is involved in the reaction, the solvent is usually treated on the
mole fraction scale rather than the molal (or molar) scale. In this case the
equilibrium constant expression can be written as:

K =
(
γx,AxA

)vA
∏

i 6=A

(γm,imi

m◦

)vi
(7.461)

where A denotes the solvent, γx,A is its activity coefficient on the mole fraction
scale, γm,i is the activity coefficient of reactant i on the molal scale and m◦

is the standard state molality (1 mol kg−1). For dilute solutions Eq. (7.461)
can be written approximately as:

K =
∏

i 6=A

(γm,imi

m◦

)vi
(7.462)

Even though the solvent is left out from the equation, the Gibbs energy of
formation of the solvent must be included in calculating ∆rG◦ for the reaction.

2. Some species in aqueous solution may be listed in thermodynamic tables in
more than one way. For example, NH3 vs. NH4OH or CO2 vs. H2CO3. In
many cases we don’t know the extent of hydration because of the difficulty in
distinguishing the species in solution. The convention in the NBS tables is that
∆fG

◦ = ∆fH
◦ = ∆fS

◦ = 0 for hydration reactions B+nH2O = B(H2O)n
where B denotes the species in question. This means that either one of the
pair can be used in the calculations.
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7.8 Determination of pH

The concentrations of hydrogen ions (H+) in aqueous solutions (in form of H3O+)
range from about 1 mol L−1 (1 M HCl) to about 10−14 mol L−1 (1 M NaOH).
Because of the wide range of concentrations an exponential scale is used (Sören
Sörensen, Danish biochemist, 1868 – 1939). The exponential scale is defined (pH
scale):

pH = − log (aH+ ) (7.463)

Strictly speaking, the activity of a single ion cannot be determined, but pH meters
are calibrated with buffers for which the pH has been calculated using the extended
Debye-Hückel equation (Eq. (7.449)).

pH may be measured with a hydrogen electrode connected with a calomel electrode
through a salt bridge:

Pt|H2(g)|H+(aq) :: Cl−(aq)|Hg2Cl2(s)|Hg

Often the contribution of the liquid junction is negligible to the cell EMF and we
can calculate E◦ for the cell (0.2802 V at 25 ◦C) and use the Nernst equation (Eq.
(7.428) and assuming that H2 is an ideal gas):

E = E◦ − RT

|ve|F
ln

(

a
(
H+
)

a (H2(g))

)

= E◦ − 2.303× 0.02569 V

|ve|
︸︷︷︸

=1

F
log

(

a
(
H+
)

a (H2(g))

)

(7.464)

= E◦ − (0.0591 V) log

(

a
(
H+
)

P (H2) /P ◦

)

= E◦ − (0.0591 V) log
(
a
(
H+
))
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Combining this with Eq. (7.463), we get:

E − 0.2802 V = (0.0591 V)× pH (7.465)

or in terms of pH:

pH =
E − (0.2802 V)

0.0591 V
(7.466)

In practice, pH sensors do not use H2 electrode but, instead,
a glass electrode is used:

Ag | AgCl | Cl−, H+ | glass membrane | solution :: calomel electrode

A schematic of this electrode arrangement is shown on the
left. The calomel electrode acts as a reference.



Chapter 8: Statistical thermodynamics

“Statistical thermodynamis provides the connection between microscopic and
macroscopic views.”
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8.1 Introduction to statistical thermodynamics

The statistical ensemble

◮ Theory developed by Maxwell, Boltzmann, Gibbs and Einsten between 1860
- 1905.

◮ Offers microscopic view to thermodynamics.

◮ Provides a natural connection between thermodynamics and quantum
mechanics. The latter has not yet been covered.

◮ Quantum mechanics provides a way to calculate energies of microsystems
(electronic, translational, vibrational, rotational), which are denoted by Ei

below.

Terminology:

System = Macroscopic thermodynamic system.
Particles = Fundamental particles that compose the system.
Macrostate = Macroscopic parameters (e.g., V, P, T ) specifying the system.
Microstate = Atom/molecular level specification of the system.

These would correspond to coordinates and velocities
of atoms/molecules, for example.

Note: For a given macrostate, many different microstates are possible. Usually only
macrostates are observable.
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Ensemble: A hypothetical collection of non-interacting systems, each of which is
in the same macrostate as the system of interest. Although the members of the
ensemble are macroscopically identical, they may not be in the same microstate.

Measurement: A measurement of any macroscopic property consists of a time av-
erage over the measurement interval. Hence it involves an inherent time averaging
process.

Postulate: The measured time average of any macroscopic property of the system
is equal to the average value of that property in the ensemble. Note that this
replaces the need to use time averages in the calculations.

An ensemble of systems that all have constant macroscopic parameters T and V is
called canonical ensemble.

The internal energy of a macroscopic system is given as an ensemble average:

U = 〈Ei〉 =
∞∑

i=1

piEi (8.467)

where 〈〉 denotes the ensemble average, Ei is the energy of system i and pi is the
statistical weight for state i (i.e., probability of state i).
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We will show that the statistical weights pi are given by the Boltzmann probability:

pi =
e−βEi

Z
(8.468)

where Z is the canonical partition function (do not confuse this with the compress-
ibility factor which was also denoted by Z earlier), which is defined as:

Z =
∞∑

i=1

e−βEi (8.469)

Assumption: For a thermodynamic system at fixed V, {ni} , T , all microstates that
have equal energy have equal probability of occurring. This implies that pi = f(Ei)
(i.e. the statistical weights depend only on the microstate energy). Note that the
above Boltzmann probability is consistent with this postulate.

In the following, we will derive the Boltzmann probabilities and expressions for U,P
and S. We will also show that β is a function of temperature only and has the form
β = 1

kT
where k is the Boltzmann constant.

Evaluation of pi (the Boltzmann probabilities):
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We need to determine the unknown function f in the above postulate. Consider
two subsystems, which are labeled 1 and 2, in an ensemble. All ensemble members
labeled 1 are macroscopically identical and all members of 2 are macroscopically
identical. However, 1 and 2 are not necessarily identical as they can differ in volume
V and composition {ni}. For 1 and 2 we then have:

p1,i = f(E1,i) and p2,j = g(E2,j) (8.470)

where p1,i is the probability for system 1 to be in microstate i (energy E1,i) and
p2,j for system 2 to be in microstate j (energy E2,j). Note that f and g are
not necessarily the same functions. Systems 1 and 2 can also be considered as a
combined single system with overall fixed volume, temperature and composition:

p1+2,k = h(E1+2,k) (8.471)

where p1+2,k is the probability that system 1+2 is in microstate k. Since systems
1 and 2 are independent of each other, we have:

E1+2,k = E1,i + E2,j with k = (i, j) (8.472)

Furthermore since the systems 1 and 2 are independent, their overall probability is
given as a product:
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h(E1+2,k) = h(E1,i + E2,j) = f(E1,i)g(E2,j) (8.473)

With x ≡ E1,i, y ≡ E2,j and z ≡ x+ y we can rewrite the above equation as:

h(z) = f(x)g(y) (8.474)

Differentiation of this equation gives:
(
∂h(z)

∂x

)

y

=

(
df(x)

dx

)

g(y) (8.475)

By using the chain rule we get:
(
∂h(z)

∂x

)

y

=

(
dh(z)

dz

)(
∂z

∂x

)

y

=
dh(z)

dz
(8.476)

Combining Eqs. (8.475) and (8.476) gives:

dh(z)

dz
=

df(x)

dx
g(y) (8.477)

In similar way, differentiation with respect to y gives:

dh(z)

dz
= f(x)

dg(y)

dy
(8.478)
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By combining Eqs. (8.477) and (8.478) we get:

g′(y)

g(y)
=

f ′(x)

f(x)
≡ −β (constant) (8.479)

For f this gives the following differential equation:

f ′(x) = −βf(x)⇒ f(x) = Ce−βx (8.480)

⇒ f(x) = Ce−βE1,i

where C is a constant of integration and β is a universal constant that is the same for
both systems 1 and 2. Note that β may depend on temperature. The normalization
constant C has to be chosen such that the sum over probabilities gives unity:

∞∑

i=1

Ce−βE1,i = 1⇒ C =
1

∞∑

i=1
e−βE1,i

≡ 1

Z
(8.481)

Thus the probabilities are given by:

pi =
e−βEi

∞∑

j=1
e−βEj

=
e−βEi

Z
(8.482)

We will later derive the exact form for β.
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Evaluation of U and P :

U =
∞∑

i=1

piEi =

∞∑

i=1
Eie

−βEi

Z
(8.483)

where Z = Z(β(T ), V, {ni}). Differentiation of Z with respect to β gives:
(
∂Z

∂β

)

V,{ni}

=

(
∂

∂β

)

V,{ni}

∞∑

j=1

e−βEj = −
∞∑

j=1

Eje
−βEj (8.484)

Now Eq. (8.483) can finally be written as:

U = − 1

Z

(
∂Z

∂β

)

V,{ni}

= −
(
∂ ln(Z)

∂β

)

V,{ni}

(8.485)

Consider next the measurement of pressure P :

P =
∞∑

i=1

piPi (8.486)

where Pi is the pressure in the ith member of the ensemble. If we have non-
interacting and adiabatic systems, we can write the internal energy differential in
two ways (for each member of the ensemble):
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dU = dwrev = −PidV (8.487)

dU =

(
∂Ei

∂V

)

dV (total differential)

⇒ Pi = −
(
∂Ei

∂V

)

where Ei is the energy of ensemble member i. This gives an expression for the
measured pressure:

P = − 1

Z

∞∑

i=1

e−βEi

(
∂Ei

∂V

)

{ni}

(8.488)

Partial differentiation of Z with respect to V gives:

(
∂Z

∂V

)

T,{ni}

=
∞∑

i=1

(

∂
(
e−βEi

)

∂V

)

T,{ni}

(8.489)

=
∞∑

i=1

∂
(
e−βEi

)

∂Ei
× ∂Ei

∂V
= −

∞∑

i=1

βe−βEi

(
∂Ei

∂V

)

T,{ni}
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Hence we can finally write P as:

P =
1

βZ

(
∂Z

∂V

)

T,{ni}

=
1

β

(
∂ ln(Z)

∂V

)

T,{ni}

(8.490)

Evaluation of β:

First we differentiate Eq. (8.485) with respect to V :

(
∂U

∂V

)

T

= −
[

∂

∂V

(
∂ ln(Z)

∂β

)

V

]

T

(8.491)

= −
[

∂

∂β

(
∂ ln(Z)

∂V

)

T

]

V

(8.490)
︷︸︸︷
= −

[
∂

∂β
(βP )

]

V

= −P − β

(
∂P

∂β

)

V

Next we will recall Eq. (4.281):
(
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P = − 1

T

[
∂P

∂(1/T )

]

V

− P (8.492)

where we have used the chain rule:
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∂P/∂T = [∂P/∂(1/T )] [∂(1/T )/∂T ] = − [∂P/∂(1/T )] /T 2

Now we can combine Eqs. (8.491) and (8.492):

− β

(
∂P

∂β

)

V

= − 1

T

(
∂P

∂(1/T )

)

V

(8.493)

Denote Y ≡ 1
T
. Then β (∂P/∂β)V = Y (∂P/∂Y )V and hence:

β

Y
=

(
∂P

∂Y

)

V

(
∂β

∂P

)

V

=

(
∂β

∂Y

)

V

=
dβ

dY
(8.494)

In the last step we have noted that β = β(T ) only. The above differential equation
can be integrated:

dβ

β
=

dY

Y
⇒ ln(Y ) = ln(β) + C (8.495)

⇒
=1/T
︷︸︸︷

Y =

=k
︷︸︸︷

C′ ×β ⇒ β =
1

kT

where k is the Boltzmann constant.
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Now we can write complete expressions for Eqs. (8.485) and (8.490):

U = −
(
∂ ln(Z)

∂β

)

V,{ni}

= −
(
∂ ln(Z)

∂T

)

V,{ni}

dT

dβ
(8.496)

= −
(
∂ ln(Z)

∂T

)

V,{ni}

(

− 1

kβ2

)

= kT 2

(
∂ ln(Z)

∂T

)

V,{ni}

P = kT

(
∂ ln(Z)

∂V

)

T,{ni}

(8.497)

The complete form for Eq. (8.482) is:

pi =
e−Ei/(kT )

∞∑

j=1
e−Ej/(kT )

=
e−Ei/(kT )

Z
(8.498)

Note that if the system contains degenerate (i.e., have the same energy) states, each
of them must be included in Eq. (8.498) separately.

Evaluation of entropy S:

Consider a reversible process where only PV -work occurs. The 1st and 2nd laws of
thermodynamics can be combined: dU = TdS − PdV . This gives:
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dS = T−1dU + PT−1dV = d
(
T−1U

)
+ T−2UdT + PT−1dV (8.499)

where we used d(T−1U) = −T−2UdT + T−1dU . Substitution of Eqs. (8.496) and
(8.497) for U and P gives:

dS = d(T−1U) + k

(
∂ ln(Z)

∂T

)

V,{ni}

dT + k

(
∂ ln(Z)

∂V

)

T,{ni}

dV (8.500)

When {ni} are constant, the total differential is:

d ln(Z) =

(
∂ ln(Z)

∂T

)

V,{ni}

dT +

(
∂ ln(Z)

∂V

)

T,{ni}

dV (8.501)

This allows us to rewrite Eq. (8.500) as:

dS = d(T−1U) + kd(ln(Z)) = d(T−1U + k ln(Z)) (8.502)

Integration of this equation gives:

S = T−1U + k ln(Z) + C (8.503)

It can be shown that C = 0 for most systems but we skip this lengthy
consideration here. Thus:

S =
U

T
+ k ln(Z) = kT

(
∂ ln(Z)

∂T

)

V,{ni}

+ k ln(Z) (8.504)

Note that other thermodynamic potentials such as G can be obtained by
G = U + PV − TS.
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8.2 Canonical parition function for a monoatomic ideal
gas

Once system’s partition function Z has been found, Eqs. (8.496), (8.497) and
(8.498) can be used to calculate thermodynamic quantities. Exact calculation of
Z for real systems is difficult because atoms/molecules interact and may require
quantum mechanical caclculations (i.e., to solve the Schrödinger equation). In the
following, we will consider monoatomic ideal gas (distinguishable atoms), which
means that we need to only consider translational motion of atoms (no vibration or
rotation) and that the total energy can be expressed as a sum of individual atoms:

Ei =
N∑

j=1

ǫi,j (8.505)

where Ei is the total energy for state i, N the number of atoms and ǫi,j is the
energy of atom j in state i. The canonical partition function Z can now be written
as:

Z =
∞∑

i=1

e−βEi =
∞∑

i=1

e
−β

N
∑

j=1
ǫi,j

(8.506)

Since the atoms are distinguishable and i runs over all possible states, we can rewrite
Eq. (8.506) as:
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Z =

N times
︷ ︸︸ ︷
∞∑

k=1

∞∑

l=1

...
∞∑

m=1

e−β(ǫk+ǫl+...+ǫm) (8.507)

=

∞∑

k=1

e−βǫk ×
∞∑

l=1

e−βǫl × ...×
∞∑

m=1

e−βǫm

Atomic partition functions are defined as:

zj ≡
∞∑

i=1

e−βǫi and Z = z1 × z2 × ...zN (8.508)

If the atoms are not all alike but there are NA (do not confuse this with the
Avograro’s number) atoms of species A, NB atoms of species B, etc. then:

Z = (ZA)NA × (ZB)NB × .. (8.509)

where ZA =

∞∑

i=1

e−βǫA,i,j , ...

Remember that this holds only for distinguishable particles (e.g., localized atoms
in a solid).
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It turns out that quantum mechanics excludes some classical states for indistin-
guishable particles and hence a different form of Eq. (8.509) must be used. It can
be shown that at sufficiently high temperatures, the canonical partition function for
indisinguishable particles is given by:

Z =
zN

N !
and z ≡

∞∑

i=1

e−βEi (8.510)

where we have assumed that most molecules are in different microscopic states (see
Physical Chemistry, Levine for more details). A mixture of species has then:

Z =
(ZA)NA

NA!
× (ZB)NB

NB !
× ... (8.511)

The above formula cannot be used, for example, at liquid helium temperatures
where the high temperature assumption does not hold.
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8.3 Internal energy of monoatomic ideal gas

For monoatomic gas, we need to only consider translational motion (no rotation or
vibration). In order to use Eq. (8.496), which here states that U = kT 2 (∂Ztr/∂T )V,{ni}

,

we have to calculate the translational partition function Ztr. If the atoms are treated
as “particles in a box” (see quantum mechanics notes), Eq. (8.509) can be written
as:

Ztr =
zNtr
N !

=
1

N !





∞∑

nx=1

∞∑

ny=1

∞∑

nz=1

e−(βh2/(8m))×(n2
x/a2+n2

y/b
2+n2

z/c
2)





N

(8.512)
where h is the Planck’s constant (6.626076 × 10−34 J s), m is the atom mass, nx,
ny and nz are quantum numbers, and a, b, c define the volume where the atoms are
confined (“the box”). When the quantitized levels are close to each other, we can
replace the above summations by integrals, for example:

∞∑

nx=1

e
−(βh2/(8m))

n2
x

a2 ≈
∞∫

0

e
−(βh2/(8m))

n2
x

a2 dnx =
1

2

(
8mπ

βh2

)1/2

a (8.513)

Since β = 1
kT

and V = abc, we can rewrite Eq. (8.512) as:
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ztr =
(
2πmkT/h2

)3/2
V (8.514)

ln(ztr) =
3

2
ln
(
2πmk/h2

)
+

3

2
ln(T ) + ln(V )

For N molecules we have:

ln(Ztr) = ln

(
zNtr
N !

)

= N ln(ztr)− ln(N !) (8.515)

Now we can use Eq. (8.496) to evaluate U :

U = kT 2

(
∂ ln(Z)

∂T

)

V,{ni}

=
3

2
kNT 2 × 1

T
=

3

2
kNT =

3

2
nRT (8.516)

This corresponds to Eq. (2.117) given earlier.



Chapter 9: Kinetics

“Thermodynamics can tell us if a given process happens or not but it does not tell
us how fast.”
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9.1 Empirical chemical kinetics

Empirical chemical kinetics concentrates on modeling the rates of chemical reac-
tions. The key observables are concentrations of the species participating the reac-
tion as a function of time. A kinetic measurement consists of mixing the reagents
(i.e., initiation of the reaction) followed by monitoring of the concentrations as a
function of time. Both steps introduce restrictions on the time resolution of the
experiment.

Examples of mixing processes:

◮ Use traditional syringes to mix solutions. A cheap and easy way but it is not
suitable for fast reactions (seconds timescale).

◮ Use fast motorized syringes to quickly mix solutions (“flow and stopped-flow
techniques”). Requires more expensive instrumentation but allows for better
time resolution. In the flow method a moving detection zone determines the
measurement time whereas in the stopped-flow the stopping syringe is used to
control the liquid flow rate (timescale depends strongly on instrumentation).

◮ For gaseous samples motorized valves can be used to mix gases in relatively
fast time scale (µs timescale).

◮ In photochemical reactions (“flash photolysis”), short laser pulses can be used
to initiate the reaction (fs - ms timescale; most commonly in ns - µs regime).
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Measurement of concentrations:

◮ UV/VIS absorption spectroscopy (lower bound timescale in femtoseconds).
The Lambert-Beer law relates absorbance to concentration.

◮ Fluorescence spectroscopy (lower bound timescale dictated by the radiative
lifetime; ns - µs). Other spectroscopic techniques such as IR and Raman may
also be used. It may be difficult to obtain absolute concentrations with these
methods.

◮ Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR;
EPR) (lower bound timescale in the ns range; often in seconds). To obtain
absolute concentrations, standard samples must be used. ESR is used for
systems involving radical species.

◮ Mass spectrometry, gas chromatography, liquid chromatography and related
methods (time resolution dictated by instrumental response).

◮ Monitoring total pressure or density of gas (typically in millisecond - second
timescale). Note that this method works only if the number of moles of the
gaseous components change in the reaction. If the chemical equation is known,
this can be used to obtain the extent of chemical reaction (ξ).

If the concentration measurement is too slow for the kinetic timescale, one can use
the quenching method to stop the reaction. This can be achieved, for example, by
rapid cooling, dilution, or acid-base neutralization. Once the reaction is stopped,
even a slow method for determining the concentrations can be applied.
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9.2 The rates of chemical reactions

Rate of chemical reaction tells us how fast the given reaction occurs. The consump-
tion of each reactant and product are dictated by this rate. The rate of chemical
reaction r is always positive and is defined by:

r =
1

vi

d [i] (t)

dt
(9.517)

where vi is the stoichiometric coefficient for i and [i] (t) denotes the concentration of
i at a given time. Note that the stoichiometric coefficients are negative if i is on the
left hand side of the chemical equation. The rate of consumption or production of i
is denoted by ri and directly given by its time derivative. Note, however, that this
rate must also be positive and thus may require changing the sign of the derivative.

Example. Consider a reaction of the form A+2B → 3C +D. What is the rate of
chemical reaction and what are the rates of the individual compounds?

Solution. The rate of chemical reaction is given by Eq. (9.517):

r =
d [D]

dt
=

1

3

d [C]

dt
= −d [A]

dt
= −1

2

d [B]

dt

rA = −d [A]

dt
, rB = −d [B]

dt
, rC =

d [C]

dt
, rD =

d [D]

dt

The SI unit for rate is mol L−1 s−1.
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Example. The rate of change in molar concentration of CH3 radicals in the reaction
2CH3(g)→ CH3CH3(g) is reported as d [CH3] /dt = −1.2 mol L−1 s−1. What are
the rate of reaction and the rate of formation of CH3CH3?

Solution. The rate of reaction is given by Eq. (9.517):

r =
1

−2
d [CH3]

dt
=

1

2
× 1.2 mol L−1 s−1 = 0.60 mol L−1 s−1

From stoichiometry of the reaction we can write:

rCH3CH3
=

d [CH3CH3]

dt
= −1

2

d [CH3]

dt
= 0.60 mol L−1 s−1

It is often found that the rate of reaction is proportional to the concentrations of
the reactants raised to a power. For example, for two reactants A and B, the rate
law might be:

r = k [A] [B] (9.518)

where the proportionality constant k is called the rate constant for the reaction.
Note that the rate constant is independent of the concentrations but may depend,
for example, on temperature. For A and B reacting, Eq. (9.518) is called the rate
law of the reaction. The general form of rate law is r = f([A] , [B] , ...) where f is a
general function.
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It should be emphasized that the rate law of a given reaction can not usually be
inferred from the chemical equation for the reaction. Most chemical equations
refer to a situation where multiple reactions occur to give the indicated outcome.
Chemical equations where only one reaction occurs are called elementary reactions.
It will turn out that the rate law and the chemical equation can only be directly
related for elementary reactions. For this reason the rate law should always be
obtained experimentally.

Example. Chemical reactions even with simple stoichiometry can result in very
complicated rate law. For example, H2(g) + Br2(g)→ 2HBr(g) gives the following
experimental rate law:

r =
k [H2] [Br2]

3/2

[Br2] + k′ [HBr]

This is very different result that one would expect based on the chemical equation.
Based on this we can conclude that this reaction is not elementary.

Once the rate law is known, we can use it to predict the rate of reaction at any
point in time. As we will see later, it can also be used to predict the concentrations
of each components at any point in time. The rate law can also give us important
clues about the reaction mechanism itself as the two must be consistent. This would
be especially useful for elementary reactions.
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Many reactions are found to have rate laws of the form:

r = k [A]a [B]b ... (9.519)

where the powers (a and b) define the order of the reaction with respect to each
species. The overall order of reaction is given by the sum of the individual orders,
a + b + .... The reaction order does not have to be an integer and for many gas
phase reactions they are not. Another special case is when the reaction order is
zero (e.g., a = 0). This corresponds to zeroth order reaction, which means that the
rate of reaction does not depend on the concentration of that particular component
(e.g., [A]a = [A]0 = 1). The zeroth order behavior usually means that there is some
other mechanism restricting the reaction rather than concentration. This could be,
for example, catalyst surface area. Only heterogeneous reactions can have overall
reaction order of zero. When the reaction is not of the form given by Eq. (9.519),
the reaction orders are not defined and there the overall reaction order is not defined
either. An example of this situation was given on the previous slide.

Example. Consider two reactions with the following rate laws: r = k [A]1/2 [B]
and r = k [A]0 = k. What are the reactions orders with respect to A and B, and
what are the overall reaction orders?

Solution. The first reaction has reaction order of 1/2 with respect to A and 1 with
respect to B. The overall reaction order is then 1/2 + 1 = 3/2. For the second
reaction the reaction order for A is zero and the overall reaction order is zero as
well.
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Determination of the rate law:

1. Isolation method. When the concentrations of all the reactants except one are
in large excess, it is possible to determine the rate law with respect to this
component. For example, considering reaction A + B where B is in excess,
the concentration of B stays approximately constant throughout the reaction.
In this case, the rate law can be written:

r = k [A]a [B]b ≈ k′ [A]a (9.520)

where k′ = k [B]b is approximately constant. By looking at the concentration
of A as a function of time, it is now possible to determine a. When a = 1
above, the reaction is called pseudofirst-order reaction.

2. Method of initial rates. The rate is measured at the beginning of the reaction
for several different initial concentrations of reactants. This is often used
together with the isolation method as follows. Suppose that the rate law with
A isolated is r = k [A]a. The initial rate r0 is then given by r0 = k [A]a0 . This
can be written as:

log (r0) = log (k) + a log
(
[A]0

)
(9.521)

This shows that a plot of log (r0) against log
(
[A]0

)
should give a straight line

with slope a.

3. If the reaction order a is an integer, the reaction order can be often determined
just by comparing the observed behavior with the integrated rate laws.
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Example. The initial rate of reaction depends on concentration of a substance A
as follows (A→ P ):

[A]0 (10−3 mol L−1) 5.0 8.2 17 30
r0 (10−7 mol L−1 s−1) 3.6 9.6 41 130

What is the order of reaction with respect to A and what is the rate constant?

Solution. Log-log plot of the data is shown below.

The slope is 1.99 ≈ 2 (2nd order) and log(k) = −1.8646⇒ k ≈ 1.4× 10−2 (units?).
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9.3 Integrated rate laws

By combining Eqs. (9.517) and (9.519), we can write for component i:

d [i]

dt
= vik [A]a [B]b ... (9.522)

This is a differential equation for the unknown functions [i] (t). Most common
solutions are considered below.

◮ First-order reactions. For a reaction A → products, we have vA = −1 and
for first-order reaction a = 1. Eq. (9.522) can now be written:

d [A]

dt
= −k [A]a = −k [A] (9.523)

The solution to the above differential equation is an exponential function:

[A] = [A]0 e
−kt (9.524)

This is called the integrated form of the rate law. The unit for k in this
equation is s−1. The half-life t1/2 (i.e., the time when half of the initial
concentration is left) for a first-order reaction is given by:

[A]

[A]0
=

1

2
= e−kt1/2 ⇒ t1/2 =

ln(2)

k
(9.525)

The numerical value for ln(2) ≈ 0.693.
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◮ Second-order reactions. The second-order rate law is obtained from Eq.
(9.522) when a = 2:

d [A]

dt
= −k [A]a = −k [A]2 (9.526)

The solution to this differential equation is (verify by differentiation):

1

[A]
− 1

[A]0
= kt or [A] =

[A]0
1 + kt [A]0

(9.527)

The unit for the rate constant k in this case is M−1 s−1 (or L mol−1 s−1).
The half-life in this case is given by:

t1/2 =
1

k [A]0
(9.528)

which can be derived the same way as we did for the 1st order reaction.
Another type of second-order reaction is:

d [A]

dt
= −k [A] [B] (9.529)

where a = b = 1 and their sum gives two as is required for an over all second-
order reaction. The solution to this differential equation is given by:

ln

(
[B] / [B]0
[A] / [A]0

)

=
(
[B]0 − [A]0

)
kt (9.530)
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Note: When [A] = [B], Eqs. (9.527) and (9.530) become idential as they describe
the same rate law.

Example. Solve the differential equation given in Eq. (9.523).

Solution. We proceed first by rearranging the equation:

d [A]

[A]
= −kdt

then we can integrate both sides:

[A]∫

[A]0

d [A]

[A]
= −k

t∫

0

dt

which gives after integration:

ln

(
[A]

[A]0

)

= −kt

This can be rearranged to correspond to Eq. (9.523):

[A] = [A]0 e
−kt
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Example. Consider the following reaction:

CH3N2CH3(g)→ CH3CH3(g) + N2(g)

At 600 K the partial pressures of CH3N2CH3 were found as follows:

t (s) 0 1000 2000 3000 4000
P (10−2 Torr) 8.20 5.72 3.99 2.78 1.94

Show that this reaction is 1st order in CH3N2CH3 and find the rate constant at
600 K.

Solution. First we remember Eq. (1.11), which gives the relationship between the
partial pressure of an ideal gas with its mole fraction:

Pi =
ni

n
P = yiP

where ni is the number of moles of component i and n is the total number of moles
present. Partial pressure Pi is proportional to the concentration of i:

Pi =
ni

n
P =

PV

n
× ni

V
= RT

︸︷︷︸

constant

×ni

V
∝ ni

V
= ci

where ci is the concentration of species i and the gas mixture was assumed to follow
the ideal gas law.
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Note that in the 1st order integrated rate law the above proportionality constant
drops out and therefore Eq. (9.524) can now be written:

Pi = Pi,0e
−kt

Here Pi is the partial pressure of CH3N2CH3. Taking natural logarithms of this
equation gives:

ln

(
Pi

Pi,0

)

= −kt

Thus plotting ln (Pi/Pi,0) as a function of t should give a straight line.

This plot is clearly linear indicating
that the 1st order integrated rate law
applies and the reaction is 1st or-
der with respect to azomethane. The
rate constant can be extracted directly
from the slope as k = −slope = 3.6 ×
10−4 s−1.
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Example. When gaseous ammonia decomposes on the surface of hot metal catalyst
(2NH3 → N2+3H2), the half-life of of NH3(g) was observed to depend on its initial
pressure as follows:

P0 (Torr) 65 105 150 185
t1/2 (s) 290 460 670 820

What is the reaction rate and what is the value of rate constant?

Solution. First we observe that the half-life depends on the initial concentration
and based on Eq. (9.525) this cannot be a first-order reaction. For a second-order
reaction the half-life should depend inversely on the initial concentration (see Eq.
(9.528)) but here we observe exactly the opposite trend and this cannot therefore
be a second-order reaction either. If we write the rate law in the form (zeroth-order
reaction):

d [A]

dt
= −k [A]0 = −k (9.531)

The integrate rate law now becomes:

[A]− [A]0 = −kt (9.532)

Inserting [A] = [A]0 /2 above, gives the half-life as:

t1/2 =
[A]0 − [A]0 /2

k
=

[A]0
2k

(9.533)
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Since this is a gas phase reaction, we replace the concentration by partial pressure
(as we did in the previous example). Note that in this example the proportionality
constant does not cancel out and we will get the rate constant in pressure units.
We expect the half-life to depend on the initial pressure of NH3(g) as follows:

Pi = 2kt1/2

Therefore a plot of the partial pressure as a function of t1/2 should give a straight
line with the slope 2k.

The data yields a straight line and confirms
that this reaction is zeroth-order. The rate
constant (in pressure units) can be extracted
from the slope: k = slope/2 = 0.112 Torr s−1.
Note that linear regression analysis can also
yield error estimates. Here the standard er-
ror estimate for the slope is ±0.003, which
gives 0.0015 Torr s−1 error for the rate con-
stant. Thus we would report the final result
as: k = 0.112 ± 0.002 Torr s−1. Another im-
portant indicator is the correlation coefficient
(r2), which for this case was 0.9998 indicating
a very good quality fit. Strong deviations from
1.0 would indicate a bad quality fit.
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Example. Liquid phase reaction CH3CH2NO2 + OH− → H2O + CH3CHNO−
2 is

second-order overall and the rate constant at 273 K is k = 0.652 M−1 s−1. The
initial concentration for nitroethane is 4.00 mM and 5.00 mM for OH−. How long
does the reaction have to proceed in order to consume 90% of the initial nitroethane
concentration?

Solution. Let us denote nitroethane by A and OH− by B. First we solve Eq.
(9.530) for t:

t =
1

k
(
[B]0 − [A]0

) ln

(
[B] / [B]0
[A] / [A]0

)

The current concentrations are [A] = [A]0 − x and [B] = [B]0 − x based on the
stoichimetry of the chemical equation. 90% consumption of A (nitromethane) cor-
responds to 10% being left:

(
[A]0 − x

)
/ [A]0 = 0.10. Solving for x gives x =

0.90× [A]0 = 3.60 mM. Then [A] = [A]0 − x = 0.40 mM and [B] = [B]0 − x = 1.40
mM. Inserting these values into the expression for t we get:

t =
1

0.652 M−1 s−1 (5.00× 10−3 M− 4.00× 10−3 M)

× ln

(
1.40× 10−3 M/5.00× 10−3 M

0.40× 10−3 M/4.00× 10−3 M

)

= 1580 s
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Summary of the rate laws:

Order Reaction Rate law t1/2

0 A→ P r = k
[A]0
2k

[A] = [A]0 − kt

1 A→ P r = k [A]
ln(2)
k

[A] = [A]0 e
−kt

2 A→ P r = k [A]2 1
k[A]0

[A] =
[A]0

1+kt[A]0
A+B → P r = k [A] [B]

ln
(

[B]/[B]0
[A]/[A]0

)

=
(
[B]0 − [A]0

)
kt

3 A+ 2B → P r = [A] [B]2

kt =
ln

(

[B][A]0
[A][B]0

)

([B]0−2[A]0)
2 +

[B]−[B]0
([B]0−2[A]0)[B][B]0

n ≥ 2 A→ P r = k [A]n 2n−1−1

(n−1)k[A]n−1
0

kt = 1
n−1

(

1
[A]n−1 − 1

[A]n−1
0

)
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9.4 Reactions approaching equilibrium

Previously we have assumed that the foward reaction is dominating and therefore
we have ignored the possiblity for the reaction go from right to left. When the
reaction approaches equilibrium, we have to consider both forward and backward
reactions.

1. First-order reactions. Consider equilibrium A ⇋ B where reactions A → B and
A← B occur simultaneously at appreciable rate. The rate constant for the forward
reaction is denoted by k+ and backward reaction by k−. Both reactions are taken
to be first order. For example, A and B could correspond to two different isomers
of a molecule. The forward rate r+ = k+ [A] and backward rate r− = k− [B]. The
rate law in terms of A can then be written as:

d [A]

dt
= −k+ [A] + k− [B] (9.534)

where the first term on the right hand side is responsible for the disappearance of
A and the second term for producing more A. Given the initial concentration of A
as [A]0, the following balance has to hold at all times: [A] + [B] = [A]0. Then we
can write Eq. (9.534) as:

d [A]

dt
= −k+ [A] + k−

(
[A]0 − [A]

)
= − (k+ + k−) [A] + k− [A]0 (9.535)

The solution to this differential equation is (verification by differentiation):
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[A] =
k− + k+e−(k++k−)t

k+ + k−
[A]0 (9.536)

Equlibrium condition is reached after we wait long enough for the system to settle
down (“steady-state”). Thus we take the limit of t → ∞ above and obtain an
expression for the equilibrium concentration of A:

[A]eq =
k− [A]0
k+ + k−

(9.537)

Since the concentrations of A and B are related to each other, we can get the
equilibrium concentration of B:

[B]eq = [A]0 − [A]eq = [A]0

(

1− k−

k+ + k−

)

=
k+ [A]0
k+ + k−

(9.538)

If we approximate activities by concentrations, the equilibrium constant can be
written for this reaction as (see Eq. (5.301)):

K =
[B]eq

[A]eq
(9.539)

Inserting the equilibrium concentrations from Eq. (9.538) into Eq. (9.539), we get:

K =
k+

k−
(9.540)
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This is consistent with the statement saying that the forward and backward rates
must be equal (k+ [A]eq = k− [B]eq) at equilibrium. If the equilibrium constant K
and one of the rates are known then the remaining rate constant can be calculated.
For a general reaction, the equilibrium constant can be expressed as:

K =
ka,+

ka,−
× kb,+

kb,−
× ... (9.541)

We have now established an important link between the rates of reaction and ther-
modynamic equilibrium.

Example. 1,2-dimethylcyclopropane cis − trans isomerization follows first-order
kinetics. At 726 K the trans isomer was observed to form according to:

t (s) 0 90 225 270 360 495 585 675 ∞
% trans 0 18.9 37.7 41.8 49.3 56.5 60.1 62.7 70.0

Calculate the equilibrium constant K and the rate constants k+ (foward) and k−
(backward).

Solution. We can directly fit the data to Eq. (9.536). Since the two variables
appear there separately, it is possible to determine them separately from this data.
Once we get k+ and k−, we can use Eq. (9.540) to calculate K.

[A]

[A]0
=

k− + k+e−(k++k−)t

k+ + k−
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The data was not given in concentration units but percentages of B. Concentrations
are proportional to % and the proportionality constant cancels out for first-order
reactions. The concentration of A is proportional to 100%−% of trans. Fitting the
given data to Eq. (9.536) is not a trivial matter. The equation is non-linear, which
requires the non-linear least squares procedure. The result is shown below.

We identify k+ = 2.40 × 10−3 s−1 and k− = 1.08 × 10−3 s−1. This gives K =
2.40 × 10−3/1.08 × 10−3 s−1 = 2.22. Non-linear least squares analysis is included
in software packages like qtiplot, which is available from:
http://soft.proindependent.com/qtiplot.html.

http://soft.proindependent.com/qtiplot.html
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2. Relaxation kinetics. The term relaxation here denotes the return of a system to
equilibrium after some given perturbation. This way we can study the relaxation
kinetics near the equilibrium. An example of suitable perturbation could be a
temperature jump that alters the equilibrium constant and hence the system will
try reach the new equilibrium condition. It is possible to reach temperature jumps
of 5-10 K in µs timescale. Other examples of perturbation are laser and microwave
fields. Based on the van’t Hoff equation (Eq. (5.323)), the equilibrium constant K
depends on temperature provided that ∆rH◦ is non-zero, which we assume in the
following.

Consider equilibrium A ⇋ B, which is a first-order reaction. If the temperature
changes, the equilibrium constantK = K(T ) changed as well. Based on Eq. (9.541),
the rate constants also depend on temperature k+ = k+(T ) and/or k− = k−(T ).
The response of the system will be exponential as shown below.

Cosider first the equilibrium condition:

d [A]eq

dt
= −k+ [A]eq + k− [B]eq (9.542)

Since we are at equilibrium
d[A]eq

dt
= 0 and the forward and backward rates are

equal: k+ [A]eq = k− [B]eq . Next the system is perturbed in such a way that the

reaction will try to reach new equilbrium concentrations given by [A] = [A]eq + ǫ

and [B] = [B]eq − ǫ. The former equation also defines the differential d [A] = dǫ.
Now the system starts evolving according to:
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d [A]

dt
= −k+ [A] + k− [B] (9.543)

where the rate constants k+ and k− now refer to the new values after perturbation.
This equation can be written in terms of ǫ as:

dǫ

dt
= −k+

(

[A]eq + ǫ
)

+ k−
(

[B]eq − ǫ
)

(9.544)

Since the forward and backward rates are equal, this simplifies to:

dǫ

dt
= − (k+ + k−)

︸ ︷︷ ︸

≡1/τ,const.,>0

ǫ (9.545)

⇒ ǫ = ǫ0e
−t/τ

where ǫ0 is the change in concentration right after the temperature jump. From
the exponential relaxation, we can obtain the sum of the new rate constants. When

this is combined with the equilibrium condition, K =
k+

k−
, it is possible to obtain

both rate constants individually.
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9.5 The temperature dependence of reaction rates

The rate constants for most chemical reactions increase as temperature is increased.
At low temperatures it is possible that some reactions, which are based on the
quantum mechanical tunneling, have rates that do not depend on temperature.
The relationship between rate constants, temperature, and the activation energies
is often found to follow the Arrhenius law (Svante Arrhenius, Swedish chemist, 1859
– 1927):

k = Ae−Ea/(RT ) (9.546)

where k is the rate constant, A is the pre-exponential factor or the frequency factor,
Ea is the activation energy for the reaction, R is the gas constant, and T is the
temperature. An alternative form for this equation is:

ln(k) = ln(A)− Ea

RT
(9.547)

The parameter Ea can be obtained from the slope when plotting ln(k) as a function
of 1/T and A from the intercept. These parameters are called Arrhenius parameters.
Eq. (9.547) can be also written at two different temperatures as:

ln

(
k1

k2

)

= −Ea

R

(
1

T1
− 1

T2

)

(9.548)

where the indices k1 and k2 refer to rate constants at T1 and T2, respectively.
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Derivation of the Arrhenius law. Consider reaction A→ B, which proceeds through
a transition state denoted by A∗. Transition state is a molecular configuration along
the reaction path where the energy has the maximum value. The reaction can then
be written as:

A
k+
⇋
k−

A∗ k→B (9.549)

The equilibrium constant for the first part of the reaction can be written as:

K =
k+

k−
=

[A∗]

[A]
(9.550)

It is plausible to assume that [A∗] << [A] since the intermediate A∗ should be
transient in nature. The concentration of the product B follows the first-order
kinetics:

d [B]

dt
= k [A∗] = kK

︸︷︷︸

≡k′

[A] = k′ [A] (9.551)

where we used Eq. (9.550) in the last step and we introduced rate constant k′ for
the formation of B from A. Note that the rate constant k′ applies for the whole
reaction A→ B. Next we apply the van’t Hoff equation (Eq. (5.323)):
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∂ (ln(K))

∂T
=

∆rH◦∗

RT 2
≈ Ea

RT 2
(9.552)

where K is the equilibrium constant between the initial and the transition states
and ∆rH◦∗ is the reaction enthalpy between these states. In the last step we have
approximated ∆rH◦∗ ≈ Ea. Since K = k′/k, Eq. (9.552) becomes:

∂ (ln(k′))

∂T
− ∂ (ln(k))

∂T
=

Ea

RT 2
(9.553)

Arrhenius assumed that the formation of the product B from the transition state
is independent of temperature and hence the second term on the left is zero:

∂ (ln(k′))

∂T
=

Ea

RT 2
(9.554)

Solution to this differential equation is given by:

k′ = Ae−Ea/(RT ) (9.555)

where the frequency factor A arises from integration of Eq. (9.554).

Caution should be excercised when interpreting Ea and A. The assumptions made
in the derivation may not be always valid causing the model to fail. Ea is the
minimum kinetic energy that reactants must have in order to form products. Not all
encounters of the reactants lead to the formation of products. The pre-exponential
factor is often related to the frequency of such collisions with the exponential part
giving the success rate.



379

Example. Rasemization of pinene is a first-order reaction. The following rate
constants were determined in the gas phase: k457.7 K = 3.7 × 10−7 s−1 and
k510.1 K = 5.1 × 10−5 s−1. Use the Arrhenius law to obtain Ea and calculate
the rate constant k480 K.

Solution. We use Eq. (9.548) at the two given temperatures:

ln

(
5.1× 10−5 s−1

3.7× 10−7 s−1

)

= − Ea

8.315 J K−1 mol−1

(
1

510.1 K
− 1

457.6 K

)

Solving for Ea gives Ea = 182 kJ mol−1. The same equation can be used to obtain
the rate constant at 480 K:

ln

(
5.1× 10−5 s−1

k480 K

)

= − 182 kJ mol−1

8.315 J K−1 mol−1

(
1

510.1 K
− 1

480 K

)

Solving for k480 K gives 3.5× 10−6 s−1.

Note: When the Arrhenius equation fails, it is often observed that the following
modified equation works well in practice (n is an empirical constant):

k = A′Tne−Ea/(RT )
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9.6 Elementary reactions

Most chemical reactions occur in a sequence of steps called elementary reactions.
An example of an elementary reaction is:

H + Br2 → HBr + Br

The molecularity of an elementary reaction is the number of molecules coming
together to react in an elementary reaction. An elementary reaction is said to
be unimolecular reaction if a single molecule reacts by itself (e.g., isomerization,
decomposition). In a bimolecular reaction, a pair of molecules collide and exchange
energy, atoms, or groups of atoms. Note: reaction order and molecularity are
not necessarily the same! Reaction order is an empirical quantity whereas the
molecularity is defined by the chemical equation of an elementary reaction.

Unimolecular elementary reaction. The rate law is first-order in the reactant:

A→ P
d [A]

dt
= −k [A] (9.556)

where P denotes products.

Bimolecular elementary reaction. The rate law is second order over all:

A+B → P
d [A]

dt
= −k [A] [B] (9.557)

Trimolecular elementary reaction. These reactions would follow third order kinetics.
However, they are very rare as three molecules must to collide at the same time.
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9.7 Consecutive elementary reactions

A reaction mechanism consists of a certain number of elementary steps. This can be
a series of first and second order reactions, which occur sequentially or in parallel.
The simplest consequtive elementary reaction can be written as:

A
k1→ I

k2→P

Next we derive the expressions for [A], [I], and [P ]. The rate of unimolecular
decomposition of A into I is:

d [A]

dt
= −k1 [A] (9.558)

The intermediate I formed from A according to:

d [I]

dt
= k1 [A]− k2 [I] (9.559)

and the product P :

d [P ]

dt
= k2 [I] (9.560)

Eq. (9.558) is just a first-order decay:

[A] = [A]0 e
−k1t (9.561)
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When the above result is substituted into Eq. (9.559) and we solve the resulting
differential equation, we get ([I]0):

[I] =
k1

k2 − k1

(

e−k1t − e−k2t
)

[A]0 (9.562)

Since we must have at all times [A] + [I] + [P ] = [A]0, we can solve for the concen-
tration of P :

[P ] =

(

1 +
k1e−k2t − k2e−k1t

k2 − k1

)

[A]0 (9.563)
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The concentrations of A, I, and P are
plotted on the left with k1 = 2k2 = 1
and [A]0 = 1. A experiences an expo-
nential decay, I starts building up and
then decreases as it finally starts pro-
ducing P .
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If one of the consequtive steps is much slower than the other(s), it is said to be
the rate determining step. For example, when k2 >> k1 all I that is formed will
rapidly convert into P . This can be seen by first noting that now: e−k2t << e−k1t

and k2 − k1 ≈ k2. Eq. (9.563) then reduces to:

[P ] ≈
(

1− e−k1t
)

[A]0 (9.564)

This shows that the formation rate of P depends only on the smaller of the rate
constants (k1 above). In general the elementary reaction with the smallest rate
constant in a given reaction scheme is the rate determining step.

Steady-state approximation. If we assume that the intermediate concentration is
independent of time, we set its time derivative to zero:

d [I]

dt
≈ 0 (9.565)

This is called the steady-state approximation. If the original differential equation(s)
are difficult to solve, one can use this approximation to simplify the calculation.
When this is applied to [I] in Eqs. (9.561), (9.562), and (9.563), we obtain:

[I] ≈ k1

k2
[A] (9.566)
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Substitution into Eq. (9.560) gives then:

d [P ]

dt
= k2 [I] ≈ k1 [A] (9.567)

This shows that P in this case would be formed through the first-order decay of A
with rate constant k1 (corresponding to the rate determining step). Integration of
this equation gives directly:

[P ] =
(

1− e−k1t
)

[A]0 (9.568)

Example. Consider the following reaction:

CH2 (CN)2 +Br2 → BrCH (CN)2 +H+ +Br−

The reaction mechanism has been determined as follows:

SH
︷ ︸︸ ︷

CH2 (CN)2
k+
⇋
k−

S−

︷ ︸︸ ︷

CH(CN)−2 +H+

S−

︷ ︸︸ ︷

CH(CN)−2 +Br2
k→

SBr
︷ ︸︸ ︷

BrCH (CN)2 +Br−
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Write down the kinetic differential equations for SH, S−, and SBr. Apply the
steady-state approximation for

[
S−
]
and use this result to eliminate

[
S−
]
from the

kinetic expressions for SH and SBr.

Solution. The reactions that appear in the reaction mechanism must be elementary
reactions. Therefore we can write the kinetic differential equations as:

d [SH]

dt
= −k+ [SH] + k−

[
S−
] [

H+
]

d
[
S−
]

dt
= k+ [SH]− k−

[
S−
] [

H+
]
− k

[
S−
]
[Br2]

d [SBr]

dt
= k

[
S−
]
[Br2]

The steady-state approximation for S− can be obtained by setting d
[
S−
]
/dt = 0.

The second equation above then gives:

[
S−
]
=

k+ [SH]

k−
[
H+
]
+ k [Br2]

This can be used to eliminate
[
S−
]
from the other kinetic equations:

−d [SH]

dt
=

d [SBr]

dt
=

k+k [SH] [Br2]

k−
[
H+
]
+ k [Br2]
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Pre-equilibrium conditions. If one of the consequtive steps involve both forward and
backward reactions, we have to account for this in the kinetic differential equations.
Consider the following reaction:

A+B
k+
⇋
k−

I
k→P

Note that it is possible to establish equilibrium in this reaction only if k− >> k.
If this is the case then we can write an approximate equilibrium condition between
A+B and I as:

K =
[I]

[A] [B]
with K =

k+

k−
(9.569)

The formation rate of P can now be written:

d [P ]

dt
= k [I] = kK [A] [B] (9.570)

Thus this is effectively a second-order rate law with an effective rate constant:

d [P ]

dt
= k′ [A] [B] with k′ = kK =

k+k

k−
(9.571)

Note: The above calculation can also be carried out without the assumption k− >>
k by using the steady-state approximation for the intermediate. In this case the
effective rate constant can be obtained as:
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k′ =
k+k

k− + k
(9.572)

The corresponding steady-state concentration for I is given by

[I] ≈ k+ [A] [B]

k− + k
(9.573)

This type of reactions are found, for example, in enzyme catalysis (the Michaelis-
Menten mechanism).

Excercise. Derive Eqs. (9.572) and (9.573) by using the steady-state approxima-
tion for I.

Notes:

◮ There are may topics in chemical kinetics that are not covered by the above
discussion. These include complex reactions such as chain reactions
(including polymerization), explosions, photochemical reactions, catalytic
reactions, and oscillating reactions.

◮ A given reaction mechanism may contain many reactions that are
consequtive/parallel etc. and it often becomes impossible to find analytical
solutions to the corresponding differential equations.

◮ A comprehensive kinetics database has been compiled by NIST and is
available online at: http://kinetics.nist.gov/kinetics/.

http://kinetics.nist.gov/kinetics/

