
Laboratory instructions and safety
(Dated: December 23, 2009)

I. GENERAL INSTRUCTIONS

• Before starting a new lab, you must always read the laboratory notes for that experiment and the instructor
will discuss the experiment with you. If you don’t know the experimental procedure, the instructor may not let
you proceed with the experiment.

• Notes must be made during each laboratory exercise (see III).

• Report to the instructor if you find equipment that is out of order or you break something.

• If you run out of some reagent, let the instructor know.

• Prepare the written laboratory report according to Sec. IV.

Note that this PDF file contains hyperlinks that can be activated by clicking on the underlined link -word.

II. LABORATORY SAFETY

The laboratory instructor will review the following safety rules and regulations with you and will point out the lo-
cation and operation of the fire extinguisher, safety shower, eye wash, and other laboratory safety equipment available.

The safety rules:

1. While in the laboratory, you must wear approved safety goggles. Hair and easily combustible clothing must be
confined at all times.

2. Do not smoke, eat, or drink in the laboratory.

3. Before beginning to work in the laboratory you should be familiar with the procedure you will be following, as
well as with any special precautions or changes that the instructor may note. Report any unexpected events to
the instructor.

4. No unauthorized experiments may be performed. Violators will be subject to severe disciplinary action.

5. Before leaving the laboratory wash your hands carefully.

6. In case of an accident, the laboratory instructor should be summoned. Furthermore:

(a) If you receive a chemical burn, immediately flood the area with cold water while another student summons
the instructor.

(b) Treatment for injuries may be obtained from the Student Health Center.

7. When conducting experiments:

(a) When cutting glass tubing or inserting tubing into stoppers, protect your hands by using a towel. Glass
tubing should be lubricated with glycerol or water to aid insertion of the tubing into stoppers. To remove
tubing from stoppers, cut the stoppers.

(b) When heating or carrying out reactions in a test tube, never point the mouth of the tube at your neighbor
or yourself.

(c) Never taste or smell a chemical unless instructed to do so.

(d) When smelling a chemical, fan vapors toward your face and inhale cautiously.

(e) Never pour water into concentrated acid; slowly add the acid to the water with constant stirring in a pyrex
beaker or flask, not in a graduated cylinder.

(f) Never pipet liquids by mouth; use a suction bulb.

(g) If objectional vapors are given off during an experiment, the experiment must be performed in a hood.
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(h) Unless instructed otherwise, flammable solvents with boiling points less than 100 oC must be heated,
distilled, or evaporated on a steam bath, not over or near an open flame. Flammable solvents should be
contained in flasks rather than in open beakers.

(i) Each student is responsible for cleaning up all spilled chemicals at his desk, on the reagent shelves, in the
hoods, and around the balances. Consult the instructor if uncertain about the method of cleanup.

(j) No chemicals should be disposed of in the sink unless instructed to do so. There are chemical solvent waste
bottles in the hood. If chemicals are disposed in the sink, they should be washed down with ample water
for several minutes. Materials such as broken glass and towels should be placed in the receptacles beneath
the sinks or in a waste jar. If in doubt, ask the instructor!

(k) Never dispose of sodium or potassium metal in the sinks as they react violently with water. Consult the
instructor for the method of disposal.

III. PREPARATION OF THE LABORATORY NOTES

Your laboratory notebook is the primary record of your observations during the experiment. The central require-
ments for a notebook are completeness and comprehensibility, not organization and polish. Make the notes in such a
way that others can read them too. Even though things may look obvious at the moment, they may not be so obvious
after few weeks! Include at least the following in your laboratory notes:

• Your name, the name of the experiment and the date.

• Your “prelab” preparations – calculations of concentrations, required glassware etc.

• The equipment used and reagents including their purities.

• Include details about weighing of compounds, volumes of liquids, and the related errors. In the latter case the
errors may originate, for example, from the accuracy of the volumetric flasks or pipettes used.

• Results from the measurement. Remember to label the numerical information you write down. In many cases,
it is preferable to present results in tabular form.

• “Unexpected” events – like switching to another buffer solution, drift in instrumental readings, etc.

You will be asked to provide a photocopy of your laboratory notes to the instructor. Once the instructor has received
the photocopy, he/she will sign your laboratory notes. The original laboratory notes must be submitted with each
written laboratory report. The original notes will not be accepted without the instructor signature! If the experiment
involves computer data files, be sure to store your data on floppy diskettes or a USB memory stick and make backups.
Remember to document the file names in your notes so that you will be able to connect the file names to the actual
measurements later on. Note that your laboratory notes will also contribute to the overall grade.

Note: If you loose your laboratory notes, you will not be able to write the laboratory report and you will have to do
the experiment again.

IV. PREPARATION OF A WRITTEN LABORATORY REPORT

A written laboratory report plays an equally important role as the experiment itself. The experimental results are
usually meaningless unless they are not analyzed and interpreted properly. Furthermore such reports must provide
the important details how the experiment was carried out. A general rule is that you should think that you are
writing to another chemist (perhaps another chemistry student) who should after reading the report understand the
experimental procedure and the meaning of the results. Do not include excessive amount of information or directly
copy the laboratory instructions. The laboratory report format (see below) corresponds loosely to that of scientific
research papers and part of the excercise is to learn how to write such documents.

Every student must prepare their own written laboratory report, which should include the following sections: Ab-
stract, Introduction, Experiment, Data analysis, Results, Discussion and Rererences. The abstract must be preceded
by a title, author and the date of the experiment. All equations, tables and figures must be numbered in sequence. In
addition, tables and figures must include a caption that describes their content. All figures must have clearly specified
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axes (i.e.., axis label and unit; for example, Wavelength (nm)). A brief overview of the required sections is given below.

Itroduction. A brief introduction that summarizes the theoretical background, and the objective and approach of the
experiment. (length typically < 1 page)

Experiment. Describe the experimental setup and add notes of any special procedures that were carried out. For
any instruments used, provide either the manufacturer and model or a schematic drawing of the setup. Indicate
the possible error sources and accuracies for each instrument used. Chemicals and their purities must also be
reported. Overall, the level of detail must be sufficient for others to repeat an equivalent experiment. Do not
include irrelevant information, like what size flasks were used in preparing the solutions etc. (length typically < 1 page)

Data analysis. Explain how the results were calculated using the experimental data. This would typically include
data fitting and the related error estimates. Note also any computer programs and additional tools that were used.
Do not include your prelab calculations here. (length typically < 1 page)

Results. This section should contain the results from the experiments and how they were analyzed. Be sure to include
the raw data in tabular form (or as graphs, if they take excessive amount of space). Remember that all numerical
data must be supplied with proper units (SI) and accuracy. For example, you can first show the raw data and then
proceed in describing the analysis and referring to the figures and tables. (length typically < 2 pages of text; may be
longer when figures and tables are included)

Discussion. Discuss your results and compare your results to literature values (theoretical and/or experimental), if
available. If your results deviate from the literature values, explain why this is so and is the difference significant.
Remember to include reference numbers in the text for any literature values used.

References. A list of references must be given, if the report references works of others. The reference numbers must
follow the order they appear in the text. The format for book references is:

1. R. J. Silbey, R. A. Alberty, and M. G. Bawendi, “Physical Chemistry (4th ed.)”, John Wiley & Sons, Inc., New
York (2005).

and for articles:

1. R. C. Neuman, Jr., and V. Jonas, “Studies of chemical exchange by nuclear magnetic resonance. IX. Rotation
about the amide bond in N,N-dimethylformamide”, J. Org. Chem. 39, 925 (1974).

Feedback (optional). Include suggestions and feedback regarding the experiment. This will not affect the grading but
simply helps the instructor to develop the course.

V. REPORTING MAGNITUDES AND UNITS

A. Approximate and exact values

Approximate values are known only with some given accuracy. For example, many experimentally obtained values
are approximate. Calculations using approximate values will also yield approximate results. Exact values are known
with infinite precision. Examples of exact values are mathematical constants and many discrete variables such as the
number of measurements, for example.

B. Number of significant digits

For exact values, all digits, that are required for communicating the numerical value exactly, are significant. For
example, 175.5 has four significant digits and 1.2340 has five significant digits. In general, inclusion of the last zero
indicates that the last digit is known to be zero. The number 3.141 × 10−4 has four significant digits. Another way
of writing this is 0.0003141. The zeros on the left of the number are not considered as significant digits.

For approximate values, the number of significant digits tells us how accurately the value is known. For example, if
we report an experimental result that has a value of 1.230, the accuracy of the measurement is communicated through
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the inclusion of the significant digits (four digits). How do we determine the last significant digit? One common
practice is to define the last significant digit so that the maximum error in the digit can be 15 units at most. Lets
consider an example. A measurement was carried out and a numerical value of 3.3245867 was obtained with an error
of ± 0.000262. For the first four digits on the left, the uncertainty is zero units. For the fifth digit (5) the error is two
units, which is still less than 15. However, for the sixth digit (8) the error is already 26 units (the leading digit in the
error now counts), which is greater than 15. Thus this is the last digit that should be kept in the result. The error
should also be rounded with the same accuracy as the value itself. The result should therefore be written as 3.32459
± 0.0003. The number of significant digits is five. In another example 34.453 ± 0.148 should be reported as 34.45 ±
0.15 with four significant digits. Note the rounding from 0.148 to 0.15 when considering the units.

C. Rounding of numbers

In these experiments, it is sufficient to use the following rounding conventions:

1. If the first digit to be discarded is less than 5, the last significant digit will appear as it is.

2. If the first digit to be discarded is 5 or larger, the last significant digit will be increased by one. For example,
0.43 could be rounded to 0.4 and 0.45 to 0.5.

Note: The above is not strictly speaking correct. Why?

D. The scientific notation

In the scientific notation the base number and the exponent are written separately. For example, 3014.15 would be
written in the scientific notation as 3.01415 × 103. Here 3.01415 is called the coefficient and it has to be a number
greater than or equal to 1 and less than 10. The use of scientific notation is preferred because the prefixes indicating
powers of ten can be used to simplify the exponent. For example, 103 would correspond to k (kilo) – see Table I for
a complete list.

TABLE I: Prefixes indicating the powers of ten.

Prefix Power Prefix Power

exa (E) 1018 atto (a) 10−18

peta (P) 1015 femto (f) 10−15

tera (T) 1012 pico (p) 10−12

giga (G) 109 nano (n) 10−9

mega (M) 106 micro (µ) 10−6

kilo (k) 103 milli (m) 10−3

hecto (h) 102 centi (c) 10−2

deca (da) 101 deci (d) 10−1

E. Units

A scientific quantity is not complete unless both the value and the unit are given. SI units should be used in most
cases. A list of SI units as well as the derived units are given tables II, III and http://physics.nist.gov/cuu/Constants/.
Conversion between SI and other unit systems are given Tables IV and V. Some constants relevant to physical
chemistry are listed in Table VI in SI units. For a more complete table, see Ref. [1].

VI. ERROR ANALYSIS

Error analysis attempts to give reliable error bounds for a given approximate value. As most experimentally
obtained results contain inevitable sources of error, it is necessary to be able to determine the errors involved in a
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TABLE II: SI units are an international standard (MKS; 1960).

Quantity Unit Symbol Definition

length meter m Fixed to speed of light
mass kilogram kg Weight of a reference cylinder
time second s Fixed to Cs radiative lifetime
current ampere A Fixed to current in reference system
temperature kelvin K 0 K = absolute zero, 273.16 K = triple point of H2O
luminous intensity candela cd Fixed to a black-body reference
amount of substance mole mol The number of 12C atoms in 0.012 kg.

Avogadro’s constant gives the number of molecules in one mole;
NA = 6.022137 × 1023 mol−1

TABLE III: Derived units based on SI units.

Quantity Unit Symbol Definition

force newton N 1 N = 1 kg m s−2

energy joule J 1 J = 1 kg m2 s−2

electric charge coulomb C 1 C = 1 As
pressure pascal Pa 1 Pa = 1 N m−2

magnetic field tesla T 1 T = 1 kg s−2 A−1

frequency hertz Hz 1 Hz = 1 s−1

power watt W 1 W = 1 J s−1

voltage volt V 1 V = 1 W A−1

resistance ohm Ω 1 Ω = V A−1

TABLE IV: Derived units based on SI units.

Non-SI unit SI unit Conversion factor

Ångström (Å) meter (m) 1 Å= 10−10 m
inch (in) meter (m) 1 in = 2.54 cm = 0.0254 m
foot (ft) meter (m) 1 ft = 12 in = 0.3048 m
mile (mi) meter (m) 1 mi = 5280 ft = 1609.344 m
AMU kilogram (kg) 1 AMU = 1.66054 × 10−27kg
eV joule (J) 1 eV = 1.602177 × 10−19 J
cal joule (J) 1 cal = 4.1868 J
torr (Hgmm) pascal (Pa) 1 torr = 1.33322 × 102 Pa
atmospheres (atm) pascal (Pa) 1 atm = 1.01325 × 105 Pa
bar pascal (Pa) 1 bar = 105 Pa
psi pascal (Pa) 1 psi = 6.8948 × 103 Pa
gauss (G) tesla (T) 1 G = 10−4 T

consistent manner. For example, a balance or a pipet have their specified accuracy and therefore the use such an
instrument in an experiment leads to an error in the quantities determined. Thus it is important to be aware of
the error sources, their magnitudes and their effect on the overall experiment. A comprehensive discussion on error
analysis relevant to physical chemistry can be found from Refs. [2, 3].

A. Determination of accuracy

As discussed earlier, an error bound specifies the interval where the accurate value resides with respect to its most
probable value. For example, when measuring the thickness of a book with a regular ruler, we might observe it to
be 1.55 cm thick within 0.05 cm. The 0.05 cm uncertainty originates from the accuracy of our ruler. Thus the real
thickness of the book is somewhere between 1.50 cm and 1.60 cm. This usually expressed as 1.55 ± 0.05 cm. In
general, for a variable x, the result should be given as:
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TABLE V: Common conversion factors. For Kelvin units, the energy corresponds to kT . Note also that 1 K = 3.1669 × 10−6

Hartree (atomic units; a.u.) or 1 eV = 27.2114 Hartree. To get J mol−1 or kcal mol−1, multiply by Avogadro’s number NA.
For example, 1 eV = 1.602177×10−19 J and 1 atm = 760 torr.

Mass – Energy

kg u J eV

1 6.022137 × 1026 8.987552 × 1016 5.609586 × 1035

1.660540 × 10−27 1 1.492419 × 10−10 9.314943 × 108

1.112650 × 10−17 6.700531 × 109 1 6.241506 × 1018

1.782663 × 10−36 1.073544 × 10−9 1.602177 × 10−19 1

Spectroscopic units

Hz cm−1 Ry eV

1 3.335641 × 10−11 3.039660 × 10−16 4.135669 × 10−15

2.99792458 × 1010 1 9.112671 × 10−6 1.239842 × 10−4

3.289842 × 1015 1.097373 × 105 1 1.360570 × 101

2.417988 × 1014 8.065541 × 103 7.349862 × 10−2 1

Energy

K kWh kcal J eV

1 3.83516 × 10−30 3.298 × 10−27 1.38066 × 10−23 8.61739 × 10−5

2.60745 × 1029 1 8.598 × 102 3.60000 × 106 2.24694 × 1025

3.0325 × 1026 1.1630 × 10−3 1 4.1868 × 103 2.6132 × 1022

7.24292 × 1022 2.77778 × 10−7 2.388 × 10−4 1 6.241506 × 1018

1.16045 × 104 4.45049 × 10−26 3.827 × 10−23 1.602177 × 10−19 1

Pressure

Pa bar kp / cm2 torr (mmHg) atm

1 10−5 1.020 × 10−5 7.5006 × 10−3 9.869 × 10−6

105 1 1.020 7.5006 × 102 9.869 × 10−1

9.807 × 104 9.807 × 10−1 1 7.3556 × 102 9.678 × 10−1

1.333 × 102 1.333 × 10−3 1.360 × 10−3 1 1.316 × 10−3

1.013 × 105 1.013 1.033 760 1

<the best value for x > ± <the estimated error in x; denoted by δx >

In the previous “book example”, we can choose the error bound loosely enough that we can be sure that the accurate
value of the book thickness is in the specified interval. However, obviously it should not be made excessively large
because then it would loose its significance. In many cases it is not obvious what value δx should have and sometimes
the error must be just simply understood as a purely statistical quantity. In that context the “best value” is usually
denoted as a mean value. The measurements are thus sampling a distribution of values.

The relative error can be defined as:

Relative error =
δx

x
(1)

where the over bar indicates a mean value. The relative error accounts for the magnitude of the quantity in the error.
The relative error is usually reported in percent (%) and for the previous “book example”, we would have: 1.55 cm
± 3 %. The relative error is dimensionless, unless it is given in percent.
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TABLE VI: Some important constants relevant to physical chemistry.

Name Symbol Value Units

Speed of light in vacuum c 2.997925×108 m s−1

Electron charge e 1.602177×10−19 C
Electron rest mass me 9.109383×10−31 kg
Proton rest mass mp 1.672622×10−27 kg
Neutron rest mass mn 1.674927×10−27 kg
Atomic mass unit AMU 1.660539×10−27 kg
Gravitation constant g 9.80665 m s−1

Vacuum permittivity ǫ0 8.854188×10−12 F m−1

Planck’s constant h 6.626069×10−34 J s−1

Planck’s constant / 2π ~ 1.054572×10−34 J s−1

Boltzmann’s constant k or kB 1.380651×10−23 J K−1

Gas constant (Na × k) R 8.31447 J mol−1 K−1

0.0831447 L bar mol−1 K−1

0.0820574 L atm mol−1 K−1

62.3637 L torr −1 K−1

Avogadro number NA 6.022142×1023 mol−1

Faraday constant (NA × e) F 9.648534×104 C mole−1

Magnetogyric ratio for protons γH 2.67522×108 s−1 T−1

B. Probability distributions

There are several common probability distributions that are used in describing the spread of errors in measurements,
for example, the normal distribution, the Student’s t-distribution and the Poisson distribution. Depending on the
error sources involved, the measured values follow the appropriate distribution around some mean value. This error
distribution can be constructed, for example, by carrying out repeated measurements of the observable and plotting
the results on a graph.

In most scientific experiments, the measured values follow the the normal distribution (also called Gaussian dis-
tribution). This is essentially predicted by the central limit theorem, which states that small random fluctuations in
a large number of variables add up to a common normal distribution regardless of the original distributions of the
variables. The normal distribution is defined as in Eq. (2):

P (x;µ, σ) =
1√
2πσ

e−
1

2 (
x−µ

σ
)
2

(2)

where µ is the mean and σ is the standard deviation of the distribution (i.e., the width). An example of normal
distribution is shown in Fig. 1. In this distribution, about 68% of the results are within µ − σ and µ + σ.

The Student’s t-distribution is a probability distribution that arises in the problem of estimating the mean of
a normally distributed population when the sample size is limited or the standard deviation of the population is
unknown. It is also the basis of the popular Student’s t-tests for the statistical significance of the difference between two
sample means, and for confidence intervals for the difference between two population means. Student’s t-distribution
approaches the normal distribution when the number of samples is large.

The Poisson distribution is a distribution function that usually arises from counting events. Eventhough the dis-
tribution itself is continuous, the corresponding experimental data is discrete. Eq. (3) gives the expression for this
distribution:

P (x;µ) =
µx

x!
e−µ (3)

where µ is the average of the distribution. Note that there is no parameter defining the width. When µ << 1 the
distribution looks like a decaying exponential function and when µ >> 1 it remebles the normal distribution.
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FIG. 1: Normal distribution with µ = 5 and σ = 1.

C. Application of error analysis

If two “identical” measurements for a given quantity do not yield the same result, there is difference between the
obtained values. Numerically the difference between the results is obtained by subtracting the values from each other.
For example, if two students measure the voltage of a given battery as 15 ± 2 V and 24 ± 3 V, the difference between
the results is 24 V − 15 V = 9 V (always a non-negative number). If we consider the error bounds given, we can
immediately see that the difference is significant because the two results are not within the bounds. Therefore we can
say that one of the measurements must be incorrect. If the results had been 16 ± 8 V and 25 ± 9 V, the difference
would be insignificant because the two results are within the given bounds. Thus both measurements in this case are
correct.

In physical chemistry laboratory work some quantities of interest are measured and compared to the results obtained
by others. In order to carry out the comparison, it is necessary to consider both the value and the associated error
bound. Let’s consider an adiabatic bomb calorimeter experiment as an example. The experiment gave the heat of
combustion for salicyclic acid as −24.4 ± 0.4 kJ/g. The corresponding literature value is 24.77 ± 0.02 kJ/g. When
comparing the two values, the error bounds must also be considered. In this case the experiment can be considered
successful because the result is within the proper bounds.

D. Types of errors

Errors can be classified as systematic errors, random errors or coarse errors. Systematic errors are characterized
by their tendency to be in one direction only, either positive or negative. For example, if a ruler is worn at one
end, it will introduce a constant error. Improper instrument calibration causes systematic errors. Systematic errors
are usually more important than random errors and they are generally much more difficult to deal with. Although
systematic errors cannot be eliminated entirely, they can be minimized by careful experimental design and by assuring
that measurements can be traced to known standards.

Random errors, on the other hand, are produced by unaccounted for variations in experimental conditions or from
small errors in making observations, such as estimating units of the smallest scale division. They tend to be scattered
over a finite range of values. If assumptions are made about the distribution of random errors it is possible to
use statistical methods to deal with them. The terms accuracy and precision are often used to distinguish between
systematic and random errors. If a measurement has small systematic errors, it has high accuracy; if the measurement
random errors are small, it has high precision.

In addition to systematic and random errors, there may be coarse errors related to the person carrying out the
experiment. These include incorrect reading of meters, incorrect laboratory notes, careless work, sudden change in
experimental conditions etc. Results from measurements subject to these errors must be discarded. If you have to
discard a particular result, you must indicate this in your laboratory notebook.
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E. Mean value and standard deviation

If repeated experiments carried out and yield the measured values x1, ..., xn, the average of the measurements should
be reported:

x =
1

n

n∑

i=1

xi (4)

where the overline denotes an average. The sample standard deviation of the set is given by:

sx =

√
√
√
√

1

n − 1

n∑

i=1

(xi − x)
2

(5)

which characterizes the variability of the measurements. This estimate does not account for the fact that our knowledge
of the true value must increase as the number of measurements increases. This is corrected in the standard deviation
of the mean estimate:

sx =
1√
n

sx (6)

For example, if time is being measured and the following results are obtained: 15.1 s, 15.3 s, 15.1 s, and 15.2 s, we
have for Eqs. (5) and (6):

sx =

√
(−0.075 s)2+(0.125 s)2+(−0.075 s)2+(0.025 s)2

3 = 0.096 s (7)

sx = 0.096 s√
4

= 0.048 s

Thus the result of the measurement is (15.18 ± 0.05) s. If you are using the scientific notation, both the value and
the uncertainty must have the same exponential part. Both parts must always be reported to the same number of
decimal places.

A confidence interval is an interval estimate for a parameter obtained from experiments. Instead of estimating the
parameter by a single value, an interval of likely estimates with some percentage is given. The higher the uncertainty
in the parameter, the wider the interval will be. For example, in the normal distribution, the standard deviation of
the mean corresponds to the 68% confidence interval. In practice, it means that 68% of the measurements fall in this
interval, µ + σ and µ− σ. Note that confidence interval is just another way of expressing how much error is involved
in the experimental determination of some parameter.

F. The law or error propagation

Let x, ..., z be measured quantities and the error bounds δx, ..., δz, which are independent and random. The error
in function q = q(x, ..., z) can be obtained using the following formula [3]:

δq =

√
(

∂q

∂x
× δx

)2

+ ... +

(
∂q

∂z
× δz

)2

(8)

This is called the law of error propagation. A qualitative way to understand Eq. (8) is to interpret the partial
derivatives as differences (i.e., each term in the sum gives (∆q)2) and then the total error is then obtained by adding
all the errors together. Consider the following example.

Example. Density of a liquid is given by ρ = m/V , where ρ is the density, m is the total mass of the liquid and V is
the total volume. The following values were determined experimentally: m = 21.34±0.01 g and V = 20.00±0.12 cm3.
For the mass m the error (δm) originates from the accuracy of the balance used and for V (δV ) from the volumetric
accuracy of the flask or pipet. The error in density (δρ) can now be obtained by using Eq. (8):
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δρ =

√
(

∂ρ

∂m
× δm

)2

+

(
∂ρ

∂V
× δV

)2

(9)

The required partial derivatives can be calculated as:

∂ρ

∂m
=

1

V
and

∂ρ

∂V
= − m

V 2
(10)

When these are inserted in Eq. (9), we have:

δρ =

√
(

δm

V

)2

+

(

−mδV

V 2

)2

(11)

Now inserting δm = 0.01 g and δV = 0.12 cm3, we get:

δρ =

√
√
√
√

(
0.01 g

20.00 cm3

)2

+

(

−21.34 g × 0.12cm3

(20.00 cm3)
2

)2

= 0.000642
g

cm3
(12)

Thus the final result is then: ρ = 1.067 ± 0.007 g cm−3. Note that the main error arises from the inaccuracy in
determining the volume. If you can estimate the magnitudes of errors caused by different variables, it is sometimes
possible to simplify the error treatment by only considering the major sources or error.

G. Other error estimates

In the previous error estimate, we assumed that all the errors δx, ..., δz are random and independent of each other.
If this does not hold, we can still provide the following error estimate [3]:

δq ≤
∣
∣
∣
∣

∂q

∂x

∣
∣
∣
∣
δx + ... +

∣
∣
∣
∣

∂q

∂z

∣
∣
∣
∣
δz (13)

where |·| denotes an absolute value.
A simple error estimate can also be obtained by calculating the mean value of the maximum and minimum values

for the function:

δq =
qmax − qmin

2
(14)

For example, in the previous example this would give:

ρmax =
m + δm

v − δV
=

(21.34 + 0.010) g

(20.00 − 0.12) cm3
= 1.0739 g cm−3 (15)

ρmin =
m − δm

v + δV
=

(21.34 − 0.010) g

(20.00 + 0.12) cm3
= 1.0601 g cm−3

Now Eq. (14) yields the following estimate:

δρ =
(1.0739 − 1.0601) g cm−3

2
= 0.007 g cm−3 (16)

In this case the estimate is exactly the same as was obtained by using Eq. (8). This, however, becomes a very
laborious, if many variables and more complicated expressions are involved.
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H. Outliers

If you observe that, for example, one of the data points appears to be completely out of line as compared to the
other points, is it possible that there was some sort of mistake in this particular measurement? Maybe, but before
discarding or keeping the point, you should consider the following: 1) check your calculations for this point, 2) repeat
the measurement for that point if possible, or 3) classify the point as outlier using statistical methods. In the latter
case, given that the experiment is governed by the normal distribution and there is just one outlier point, it is possible
to use the Q test [2]:

Q =
xsuspect − xclosest

xsuspect − xfarthest

(17)

where xsuspect is the outlier point value, xclosest is the closest x value to the outlier and xfarthest is the point farthest
away from the outlier. For 90% confidence level, if the value of Q exceeds: 0.941 (N = 3), 0.765 (N = 4), 0.642 (N =
5), 0.560 (N = 6), 0.507 (N = 7), 0.468 (N = 8), 0.437 (N = 9) and 0.412 (N = 10), you may discard the point [2].
Here N denotes the number of measured points. Note that if you discard an outlier point, you will need to recalculate
averages, standard deviations, etc. without the outlier point.

VII. GRAPHS

When preparing a graph, the following issues should be kept in mind:

• Graphs must always have a name.

• A graph must be drawn with coordinate axes where the horizontal axis represents the independent variable
(“x”) and the horizontal axis the dependent variable (“f(x)”).

• The coordinate axes must be given meaningful names and proper units must be indicated on them (in the middle
or at the end of the axes).

• The axis labels must be chosen in such a way that the values of the data points are easy to read.

• The data points must be clearly marked in the graph. It is suggested that either black dots or crosses are used.

• If error bars are available for the individual points, they should be indicated in the graph by drawing a vertical
segment on the data points (see Fig. 2).

• When drawing a curve that connects the data points, this should be done smoothly ignoring the random errors
in points. Preferably a least squares fit should be provided.

• If the errors in slopes are to be demonstrated graphically, a pair dotted of error lines should be drawn. They
correspond to maximum and minimum values for the slope. Note that this method can be used for obtaining
the errors graphically as well.

• If the errors in points of intercept are to be demonstrated graphically, a set of additional lines should be drawn.
The intercepts of the error lines correspond to the minimum and maximum values. Note that this method can
be used for obtaining the errors graphically as well. The most common way is to obtain the errors from the
least squares fit method (next section).

• The statistical prediction bands (95%, for example) can be included in the graph as shown in Fig. 3.

VIII. THE LEAST SQUARES METHOD

A. The linear least squares method

In physical chemistry mathematical models are usually developed to describe dependencies between different vari-
ables. For example, recall the Beer-Lambert law used in UV/VIS spectroscopy:
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FIG. 2: A graph demonstrating the use of error bars for data points (black dots). The continuous line represents the results
from a least squares fitting procedure.
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FIG. 3: Experimental data points (circles) showing linear behavior. The solid line was obtained by the linear least square
fitting procedure. The data points deviate slightly from strictly linear behavior because of the experimental uncertainty. The
confidence band lines show the 95% interval.

A = ǫcl (18)

where A is the absorbance of a given species, ǫ is the molar absorption coefficient and l is the length of the sample
(optical path length). If we had a set of points consisting of sample concentrations and absorbances, we should be
able to obtain a value and the error bounds for ǫ (the sample length is assumed to be known). If the data points are
plotted, the points should fall on a straight line (within the accuracy of the measurement) as shown in Fig. 3. In
the following we will outline the linear least squares method (also called “linear regression”) and show how it can be
applied in fitting a given mathematical model to a set of experimental data.

First we consider the linear case (i.e., the function is of the form y = kx + b). If the data points are denoted by
(x1, y1), ..., (xn, yn), the least squares error function is:

χ2(k, b) =

n∑

i=1

(y(xi; k, b) − yi)
2

=

n∑

i=1

(kxi + b − yi)
2

(19)

The function in Eq. (19) tells how much overall deviation there is between the data and the function. The error
function depends on two parameters k and b. In order to find the best values for the parameters, it is necessary to
minimize the error function χ2(k, b) with respect to k and b. Note that sometimes weighting constants wi may be
added to Eq. (19) to vary to the significance of the points, above we have chosen wi ≡ 1.

The exact derivation of the solution is not given here (see, for example, Ref. [4]) but the results can be summarized
as:
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k =
SxxSy − SxSxy

∆
and b =

nSxy − SxSy

∆
(20)

where Sx =
n∑

i=1

xi, Sy =
n∑

i=1

yi, Sxx =
n∑

i=1

x2
i , Sxy =

n∑

i=1

xiyi and ∆ = nSxx − S2
x

When the law of error propagation is applied, we obtain the following standard error estimates for k and b:

δk =

√

Sxx

∆
and δb =

√
n

∆
(21)

The overall quality of the fit can be estimated from the correlation coefficient:

r2 = 1 − χ2

n∑

i=1

(yi − y)
2

(22)

where the overline denotes an average. If the correlation coefficient is close to one, the fit is excellent. However, if
the r2 is close to zero, the data doesnt fit the function, which means that the procedure failed. All the calculations
can, in principle, be carried out by hand, but for large number of samples this becomes a tedious task. There are
computer programs available for least squares fitting.

B. Application of the linear least squares method on some “non-linear” functions

The linear least squares method can be applied to some non-linear functions as well provided that one can find a
suitable transformation. For example, consider the following non-linear function:

y = AeBx (23)

where A and B are parameters to be fitted. The linear least squares method cannot be applied directly because the
function in Eq. (23) is non-linear. However, if natural logarithms are taken on both sides of the equation, we get:

ln(y)
︸ ︷︷ ︸

“y”

= ln(AeBx) = ln(A) + ln(eBx) = ln(A)
︸ ︷︷ ︸

“b”

+ Bx
︸︷︷︸

“kx”

(24)

As indicated by the comments above, the equation becomes linear after this transformation. A plot of ln(y) against
x will yield a straight line with a slope that equals B. In order to obtain A, a natural logarithm of the point of
interception must be taken. The linear least squares method can also be extended to fit polynomial functions [4].

C. The non-linear least squares method

In non-linear least squares, the model function y(x; pi) in χ2 (see Eq. (19)) is non-linear. Here pi’s are the model
parameters to be optimized. In practice, this means that methods based on linear least squares method cannot
be applied and the non-linear problem has to be solved by using general minimization methods. Examples of such
optimization methods are the conjugate gradient, Newton and Levenberg-Marquardt methods [4]. They require user
to provide initial guesses for the model variables pi as well as various parameters that control the optimizion algorithm.
Note that these methods may converge to local minimima, which may result in non-optimal fits. The general idea
of these methods is that they calculate the gradient vector of χ2 at a given point and attempt to follow −∇χ2 to
locate the minimum (for example, gradient, conjugate gradient, Newton, Levenberg-Marquardt [4]). Typically this
process will take several iterations to converge. The non-linear least squares can be easily extended to fit multiple
data sets and models simultaneously using a set of shared parameters pi. This situation is often encountered when
fitting experimental concentration data to kinetic models. Error analysis in non-linear least squares is very tricky and
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accuarate error analysis would often require Monte Carlo simulations. However, in practice, it is assumed that the
χ2 can be approximated by a linear function of the parameters near the minimum and that the measurement errors
obey a normal distribution. In this case, the Hessian matrix (i.e., the 2nd derivative matrix) of χ2 can be used to
obtain the obtain the standard errors for the parameters αii [4]:

αii = σ2






∂2χ2

∂p2

1

... ∂2χ2

∂p1pn

... ... ...
∂2χ2

∂pnp1

... ∂2χ2

∂p2
n






−1

(25)

where the variance in measurements σ2 is usually approximated as:

σ2 ≈
χ2

opt

m − n
(26)

and χ2
opt refers to χ2 evaluated at the optimimum values of pi, m is the total number of data points and n is the number

of parameters pi. Note that the failure of the linearity assumption may lead to an unrealistically larger estimate of
the errors. The standard errors αii can be used for providing confidence bands. For example, 95% confidence band is
given by:

pi − 1.95αii ≤ pi ≤ pi + 1.95αii (27)

The above procedure has been implemented in the “nlsq.mac” and qtiplot programs.

IX. COMMON EXPERIMENTAL TECHNIQUES

A. Vacuum basics

The three common vacuum ranges are low (above 10−3 Torr), high (10−3 - 10−9 Torr) and ultra-high (below 10−9

Torr; see http://en.wikipedia.org/wiki/Ultra-high_vacuum) vacuum. Each pressure range places its special
requirements for the vacuum pumps, vacuum line, and the measurement of pressure. Note that it is not practically
possible to create perfect vacuum and hence the use of word vacuum does not necessarily imply that it would be a
perfect one.

1. Vacuum pumps

A vacuum pump is a pump that removes gas molecules from a sealed volume in order to leave behind a partial
vacuum. Vacuum pumps can be broadly catergorized into three classes:

• Positive displacement pumps, which are based on the following pump cycle: expand to let gas flow through the
inlet into the pump chamber, seal the chamber and finally exhaust by opening the chamber to the outlet of
the pump (i.e., the exhaust). Examples of this type of pumps are: rotary vane pump (“oil pump”, “mechanical
pump”; most common type; oil contamination problem; 2 stage pumps for improved vacuum), diaphragm pump
(no oil contamination) and roots pump (“booster pump”; extremely high pumping speeds). For example, two

stage rotary vane pumps can produce vacuum down to 10−3 Torr. Before operating a rotary vane pump, make
sure that there is enough pump oil in it!

• Momentum transfer pumps, which use high speed jets of dense fluid or high speed rotating blades to
force gas molecules out of the vacuum chamber. The most common pumps of this type are diffusion and
turbo molecular pumps. These pumps cannot operate at atmospheric pressures and hence they require a back-
ing pump (typically a rotary vane pump). Both pumps can typically produce vacuum conditions in the range
10−6 to 10−8 Torr. Note that below 10−6 Torr ultra-high vacuum versions of the pumps are required. Special
ultra-high vacuum versions may go down to 10−10 Torr. Note that it is possible to destroy these pumps if the
backing pump is turned off wile they are on. Also turning off a turbo pump requires a special procedure. After

14

http://en.wikipedia.org/wiki/Ultra-high_vacuum
http://en.wikipedia.org/wiki/Vacuum_pump
http://en.wikipedia.org/wiki/Vacuum
http://en.wikipedia.org/wiki/Rotary_vane_pump
http://en.wikipedia.org/wiki/Diaphragm_pump
http://en.wikipedia.org/wiki/Roots_blower
http://en.wikipedia.org/wiki/Diffusion_pump
http://en.wikipedia.org/wiki/Turbomolecular_pump


turning the pump off, it must typically be vented from the low vacuum side (this may be automatic initiated
by the controller unit). The backing pump may only be turned off after the turbo pump blades are no longer
spinning fast (see the controller or “listen”). It is very easy to damage the pump when turning it off! Turbo
pumps are very expensive and one must be extra careful with them. Diffusion pumps are not as sensitive (and
also less expensive) but it should be remembered that letting excessive amounts of air into a diffusion pump will
cause the oil in the pump to burn down and it will be very difficult to clean the pump after this.

• Entrapment pumps capture gases in a solid or absorbed state. Examples of this type of pumps are cryopumps
and ion pumps. A liquid nitrogen (77 K) trap (see below) is a simple cryopump. It freezes all the gas into solids
resulting in drop in pressure.

The following terms are frequently used to specify the performance of a vacuum pump:

• Pumping speed refers to the volume flow rate of a pump at its inlet, often measured in liters per second, cubic
feet per minute, or cubic meter per hour. Because of compression, the volume flow rate at the outlet will always
be much lower than at the inlet. Momentum transfer and entrapment pumps are more effective on some gases
than others, so the pumping speed can be simultaneously different for each of the gases being pumped, and the
average pumping speed will vary depending on the chemical composition of the gases remaining in the chamber.

• Throughput refers to the pumping speed multiplied by the gas pressure at the inlet, and is measured in units
of pressure×volume / unit time. At a constant temperature, throughput is proportional to the number of
molecules being pumped per unit time, and therefore to the mass flow rate of the pump. When discussing a
leak in the system or backstreaming through the pump, throughput refers to the volume leak rate multiplied by
the pressure at the vacuum side of the leak, so the leak throughput can be compared to the pump throughput.

When high pumping speeds are needed, it is not only important to consider the vacuum pump but also the
connections leading to the pump. There are known formulas available in the literature that can be used to estimate
gas flows in tubes, valves, etc.

2. Vacuum lines

Vacuum manifolds are most often constructed from either glass or stainless steel (or other inert material) tubing.
Glass vacuum lines are often cheaper but usually more difficult to construct and they are fragile. Stainless steel tubing
can be connected using, for example, ultratorr connectors, which have O-rings for providing a vacuum tight seal. A
more rigorous way of connecting metal tubing is by flanges such as the KF (or QF) standard or when high-vacuum
conditions are required the CF standard. The former is based on rubber-like gaskets (“O-rings”), which work down to
10−6 Torr where as the latter CF flanges work below this limit as well. Note that CF flanges require a new (copper)
gasget every time it is opened and O-rings must be clean, no cracks and they should have a light amount of (high)
vacuum grease on them. Electrical connections into the vacuum line can be introduced by using electrical vacuum
feedthroughs. A quick overview of vacuum connectors can be found online at . Sometimes the Schwagelok standrad
is also used in vacuum lines but its use should be avoided in high-vacuum applications. Leaks in vacuum lines can be
sometimes very difficult (and frustrating!) to find. Starndard techniques such as the “snoop” (soap solution), acetone
sprayed from outside the vacuum line on the area of the suspected leak resulting in sudden pressure increase, and
helium leak testers (based on mass spectrometry; expensive) can be used.

Parts of a vacuum line can be isolated by valeves, which must be designed for the pressure range needed. The valve
used must be compatible with the vacuum connection standard described above. If one needs to regulate gas flow,
needle valves should be used. A general overview of valves can be found from http://en.wikipedia.org/wiki/Valve.

Examples of glass vacuum lines can be found from http://en.wikipedia.org/wiki/Schlenk_line. Note that the
vacuum pumps are usually protected by a cold trap, which freezes most gases before they enter the vacuum pump. A
cold trap must be used especially when working with corrosive gases. In such cases the vacuum line should be placed
inside a hood.

When starting to pump a vacuum line, remember that adsorbed water on the inner walls of the line is hard to
pump off. Usually overnight pumping times are required and additionally one may have to heat up the vacuum line
(or chamber).

B. Measurement of pressure

Many techniques have been developed for the measurement of pressure. Instruments used to measure pressure are
called pressure gauges or vacuum gauges. A manometer could also be referring to a pressure measuring instrument,
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usually limited to measuring pressures near to atmospheric pressures. The term manometer is often used to refer specif-
ically to liquid column hydrostatic instruments. A vacuum gauge is used to measure the pressure in a closed system.
The applicable pressure range of many of the gauges used to measure vacuums have an overlap and hence, by combin-
ing several different types of gauges, it is possible to measure system pressure continuously down to 10−11 Torr. More
about the measurement of pressure can be found from http://en.wikipedia.org/wiki/Pressure_measurement.

Depending on the pressure range, there are several types of pressure gauges available:

• Mercury manometer. This is based on the rise of mercury level induced by pressure. This type of manometers
are not used anymore and have only historical signifance.

• Capacitance manometer. These gauges employ a diaghragm and pressure cavity to create a variable capacitor
to detect strain due to the applied pressure. They usually operate in the pressure range from few atmospheres
down to mTorr range. These gauges are very robust and resistant to various chemicals.

• Pirani gauge. A Pirani gauge consists of a metal wire open to the pressure being measured. The wire is heated
by a current flowing through it and cooled by the gas surrounding it. If the gas pressure is reduced, the cooling
effect will decrease, hence the equilibrium temperature of the wire will increase. The resistance of the wire is a
function of its temperature. By measuring the voltage across the wire and the current flowing through it, the
resistance (and the gas pressure) can be determined. The usual applicable pressure range is from 10−3 to 10
Torr. Advanced models can nowadays cover the range from 10−5 to 1000 torr.

• Thermocouple. These gauges work in a similar manner to the Pirani gauge except that a thermocouple or
thermistor is used to measure the temperature of the wire. Applicable pressure range 10−3 to 10 Torr.

• Ionization gauges. These are the most sensitive gauges for very low pressures (10−10 - 10−3 Torr). They sense
pressure indirectly by measuring the electrical ions produced when the gas is bombarded with electrons. Fewer
ions will be produced by lower density gases. There are two common variants of ionization gauges: hot and cold
cathode gauges. In hot cathode gauges an electrically heated filament produces free electrons. The electrons
travel through the gauge and ionize gas the surrounding molecules. The resulting ions are collected at the
negative electrode and the measured current depends on the number of ions, which is related to the pressure.
The principle behind cold cathode gauges is the same, except that electrons are produced in a discharge created
by a high voltage electrical discharge. Ionization gauge calibration is very sensitive to construction geometry,
chemical composition of gases being measured, corrosion and surface deposits. In practice, especially the surface
deposits introduce readout errors on these gauges. To avoid the formation of such deposits, these gauges should
never be operated at elevated pressures. Note that the deposits cause the gauge to show too good vacuum
readings.

C. Cryogenics and measurement of temperature

The most commonly used substances for cooling down scientific instruments are: ice (273
K), dry ice (solid carbon dioxide; 194.5 K; http://en.wikipedia.org/wiki/Dry_ice), liquid ni-
trogen (77 K; http://en.wikipedia.org/wiki/Liquid_nitrogen), and liquid helium (4.2 K;
http://en.wikipedia.org/wiki/Liquid_helium). The three first substances are fairly cheap but liquid he-
lium is very expensive (about $10 / L). Pumping on the gases from cold liquids can provide cooling even to lower
temperatures. Remember that when a liquid evaporates, it provides cooling (e.g., water evaporating from your skin).
This technique is often applied with liquid helium because there is no danger of it freezing. Liquid nitrogen can
freeze, for example, and this can cause problems for the experiment. Temperatures below 1 K can be reached with
the limiting factor being the throughput of the vacuum pump and liquid helium consumption. Dilution refrigerators
provide a good alternative for low temperatures (http://en.wikipedia.org/wiki/Dilution_refrigerator).

Compress-expander systems, based on, for example, the Joule-Thompson process, provide cost a effective alterna-
tives for using cryogens. These instruments are closed cycle systems, which means that they do not consume the
helium gas that is used in the cooling down process. Modern closed cycle cryostats can provide as low temperatures
as 4 K.

Cryostat is an instrument that can provide low temperatures for the experiments being conducted
(http://en.wikipedia.org/wiki/Cryostat). It is important that the cold part of the cryostat is thermally in-
sulated from the room temperature objects. Thermal insulation is usually provided by vacuum and hence most
cryostats have vacuum shroud(s) and vacuum pumps to provide insulation. When low temperatures are needed, the
cryostat may have multiple thermal insulation stages that may consist of vacuum, liquid nitrogen or other type of
radiation shields. The latter is usually needed to protect against propagation of heat by radiation (IR radiation from
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room temperature objects). For spectroscopic experiments cryostats must have windows that allow for optical access
to the sample. The windows must be transparent for the wavelength range used. Vacuum insulation between the
cryostat body and the windows is often provided by either O-rings or indium metal gaskets.

Cryostats cool down the samples down to the lowest achievable temperature. To obtain higher temperatures, an
electrical heater must be installed. This usually corresponds to just a coil of metal wire that has some resistance. By
driving electrical current through it, heat is dissipated into the surroundings resulting in increased temperature of the
cryostat. To control the temperature, it is necessary to have a temperature sensor inside the cryostat. Temperature
controllers can provide suitable heater current given feedback from a temperature sensor. The following temperature
sensors are commonly used:

• Thermocouple. A thermocouple or thermocouple thermometer is a junction between two different metals that
produce a voltage related to a temperature difference. They are inexpensive and interchangeable, are sup-
plied fitted with standard connectors, and can measure a wide range of temperatures. The main limitation
is the accuracy as systematic errors of less than 1 K can be difficult to achieve. For more information see
http://en.wikipedia.org/wiki/Thermocouple.

• Resistive thermal devices (RTD). RTDs are temperature sensors that take advantage of the predictable change
in electrical resistance of materials with changing temperature. Most often they are made of platinum. For
more information, see http://en.wikipedia.org/wiki/Resistance_thermometer.

• Diodes. A diode can be used as a temperature measuring device, since the forward voltage drop across the diode
depends on temperature. Diodes can provide very accurate temperature readings down to few K temperatures.
For more information about diodes, see http://en.wikipedia.org/wiki/Diode.

X. COMPUTER SOFTWARE FOR PHYSICAL CHEMISTRY

A. Operating system (Linux)

Linux is a free operating system that works on all personal computers (Intel/AMD based PCs, Intel/PowePC based
Macintoshes, etc.). Many of the scientific programs have been written for Linux and it has strong support from the
academic community. Linux can be installed in such a way that it co-exists with other operating systems such as
Microsoft Windows. In this case, when the computer starts up, it will ask which system to use. However, installing
Linux on a machine with an existing Windows installation is somewhat tricky and there is a danger of data loss.
For this reason, it is advisable to do your first installation on an old computer where you can wipe out the existing
windows partition (i.e., no important data). Another alternative is to install an additional hard drive for Linux and
perform the installation on that drive. Detailed installation instructions can be found from the installation guide.
Note that there are many Linux distributions available, for example, Debian, Ubuntu, Slackware, etc. The most
popular ones are Fedora and Ubuntu.

On Fedora Linux, programs can be installed over the internet by accessing “Applications → Add/Remove Software”.
All the programs discussed in this manual are available for Fedora by default. If you are using Windows, you will
have to install the programs separately from the corresponding program web page. Note that some of the programs
are not available for Windows.

There are Linux PCs available for use in the physical chemistry laboratory and Windows based machines in the
department PC classroom.

B. Text processing

If you want to produce high quality documents for scientific purposes, Microsoft Word may not be the optimal
choice. Two other possibilities are LATEX and OpenOffice. LATEX is the best choice for scientific purposes but it takes
some time to learn how to use it. OpenOffice is very similar to Microsoft Office package but it is available for many
different systems. Both LATEX and OpenOffice are free software.

1. LATEX

Installation and general information about LATEX, which is built on top of the TEX program, can be found from
TEXusers group. Introductory documentation for LATEX can be found on-line. Some people prefer to use the REVTEX
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package rather than plain LATEX, more information can be found from REVTEX documentation. For example, this
laboratory manual is written using REVTEX. Note that there are good TEX oriented editors available for Linux, such
as Kile.

2. OpenOffice

OpenOffice can be installed on Linux, Macintosh or Windows computers. It can be downloaded for free from
their web page. For Fedora and Ubuntu Linux, it is installed by default. This package contains: word processor
(equivalent to Microsoft Word), presentation (equivalent to Microsoft Powerpoint), spreadsheet (equivalent to Mi-
crosoft Excel), draw and database manager. Openoffice comes with full documentation with additional tutorials
available on their web site.

C. Symbolic algebra (Maxima)

Maxima is a free computer algebra system (CAS; e.g., symbolic differentiation and integration, set of linear equa-
tions, etc.). The program works on Linux, Windows and Macintosh computers. Most Linux distributions include
Maxima with the system. On Fedora Linux, use the “Applications → Add/Remove Software” menu selection. It can
also be downloaded and installed manually from the download page. To run the basic version of Maxima, you must
start it from the command line (e.g. open a terminal window by “Applications → System Tools → Terminal”) by
typing: maxima . To exit the program, type “quit();”

Maxima is strictly a command line based program, however, there is a graphical frontend available for it: wxMaxima.
This program is also included in Fedora Linux and can be installed the same way as Maxima. For windows, the
program must be installed manually (see the Download section on wxMaxima web page). To start the program on
Fedora Linux, choose “Applications → Programming → wxMaxima”. This program should be used analyzing the
data in this course.

1. Basic usage

There is extensive documentation available for Maxima on the web, which includes both reference manual and
tutorial. In the following few examples of using Maxima are demonstrated. This presentation follows loosely that of
given in Ref. [5].

Using Maxima as a calculator: A sample Maxima session is shown below:

(%i1) 1+1;
(%o1) 2

or a more complicated example:

(%i1) exp(-10/2.5);
(%o1) .01831563888873418

Note in above that each line must end with a semicolon (;) and by pressing return/enter. In some cases, float()
command is needed to get an approximation of the result. For example, float(3/4) will display 0.75 instead of 3/4. In
addition to numbers, common constants have been predefined as: %e (Euler’s number), %pi (π), %i (the imaginary
unit), inf (∞) and minf (−∞). For example, sin(%pi) will give zero. Here are some commonly used predefined
functions in Maxima: sin (sine function), asin (arcus sine function), cos (cosine), acos (arcus cosine), tan (tangent),
atan (arcus tangent), cot (cotangent), sqrt (square root), log (e based logarithm) and exp (exponentiation ex). There
is no built-in definition for a ten base logarithm, so one must use: log(x) / log(10). To calculate powers, use the ˆ
character; for example, 2ˆ3 will give 8.

Symbolic calculations: A few examples are given to demonstrate how symbolic calculations are done. First, to
factor polynomials use:

(%i1) factor(x^2 + x - 6);
(%o1) (x - 2) (x + 3)
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or to expand a polynomial:

(%i1) expand((x+3)^4);
4 3 2

(%o1) x + 12 x + 54 x + 108 x + 81

Rational expressions can be simplified with the ratsimp function:

(%i1) ratsimp((x^2-1)/(x+1));
(%o1) x - 1

and to simplify a trigonometric expression:

(%i1) trigsimp(2*cos(x)^2 + sin(x)^2);
2

(%o1) cos (x) + 1

Trigonometric expressions can also be expanded:

(%i1) trigexpand(sin(2*x) + cos(2*x));
2 2

(%o1) - sin (x) + 2 cos(x) sin(x) + cos (x)

Expressions can be outputted in TEX format with the tex command:

(%i1) x^3+x^2+1;
3 2

(%o1) x + x + 1
(%i2) tex(%);
$$x^3+x^2+1$$
(%o2) false

Here % refers to the previous expression. The string starting with $$ is the TEX format expression. Sometimes it is
useful to define functions, which simplify the notation. Functions can be defined as follows:

(%i1) f(x,y) := sin(x) + cos(x);
(%o1) f(x, y) := sin(x) + cos(x)

This defines a function f that depends on variables x and y.

Solving equations: To solve an equation for specified unknown variable, use:

(%i1) solve(x^2 - 4 = 0,x);
(%o1) [x = - 2, x = 2]

So the answer is ±2. A more complicated example is given by:

(%i1) solve(x^3=1,x);
sqrt(3) %i - 1 sqrt(3) %i + 1

(%o1) [x = --------------, x = - --------------, x = 1]
2 2

which shows that there are three roots, one real and two imaginary. It is also possible to specify multiple equations
and variables:

(%i1) solve([y = y^2 + x, x = y^2 + y],[x,y]);
(%o1) [[x = 0, y = 0]]
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However, it should be remembered that the program may not find all solutions to non-linear problems.

Creating 2D and 3D graphs: For example, the following command will plot function f(x) = x2 from -10
to 10: plot2d(xˆ2,[x,−10, 10]). To plot multiple functions in the same graph, use for example: plot2d([xˆ2,
xˆ4 ],[x,−10, 10]). 3D plots can be produced with plot3d command, for example: plot3d(sin(x) + cos(y), [x, -5, 5 ],
[y, -5, 5 ]).

Taking limits: To evaluate limits, use the limit command. For example:

(%i1) limit((1 + 1/x)^x, x, inf);
(%o1) %e

This states that lim
x→∞

(
1 + 1

x

)x
= e. To calculate lim

x→0+
log(x), use (note that plus signifies that x approaces zero from

the positive side):

(%i1) limit(log(x), x, 0, plus);
(%o1) minf

Maxima replies that the result is −∞. To approach from the negative side, replace “plus” with “minus” above.

Symbolic differentiation: Expressions can be differentiated with diff, for example:

(%i1) diff(sin(x),x);
(%o1) cos(x)

which states that d
dx

sin(x) = cos(x). Or a slightly more complicated example:

(%i1) diff(x^x,x);
x

(%o1) x (log(x) + 1)

Higher order derivatieves can be calculated by adding the requested degree as a paramter:

(%i1) diff(x^3,x,3);
(%o1) 6

which differentiates x3 three times with respect to x. To differentiate an expression first with respect to x and then
with respect to y, use:

(%i1) diff(diff(x^2 + y, x),y);
(%o1) 0

Symbolic integration: To solve indefinite integrals (i.e., without limits) with Maxima, use the integrate command
as follows:

(%i1) integrate(1/x,x);
(%o1) log(x)

Definite integrals (i.e., with limits) can be also solved with the integrate command but now the limits have to be
specified (lower limit 0 and upper limit 1 below):

(%i1) integrate(x + 2/(x - 3), x, 0, 1);
1

(%o1) - 2 log(3) + 2 log(2) + -
2

(%i2) float(%);
(%o2) - 0.310930216216329

In the last step, a numerical approximation was requested with the float command. If Maxima cannot integrate your
function analytically, you can try to integrate it numerically (below the lower limit is 0 and the upper limit is 1):
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(%i1) romberg(cos(sin(x + 1)), x, 0, 1);
(%o1) .5759175005968216

Sums and products: The following examples demonstrate evaluation of finite and infinite sums. A sum can be
defined as follows:

(%i1) sum(k, k, 1, n);
n

====
\

(%o1) > k
/
====
k = 1

and it can be simplified by adding simpsum after its definition:

(%i1) sum(k, k, 1, n), simpsum;
2

n + n
(%o1) ------

2

To specify an infinite series, use:

(%i1) sum(1/k^4, k, 1, inf), simpsum;
4

%pi
(%o1) ----

90

which says that
∞∑

k=1

1
k4 = π4

90 .

Series expansions: To obtain Taylor series of a given function, use:

(%i1) taylor(%e^x, x, 0, 5);
2 3 4 5

x x x x
(%o1)/T/ 1 + x + -- + -- + -- + --- + . . .

2 6 24 120

where x is the variable for expansion, zero specifies the point around which the expansion is performed and the last
argument (five) specifies that terms up to fifth power should be included in the expansion.

Finally, to exit the program, you can type use the quit command as follows:

(%1) quit();

2. Downloading Maxima packages from the course web page

The required Maxima packages can be downloaded from the course web page: http://www.csun.edu/~jeloranta

(see either CHEM352L or CHEM355L). Use your web browsers (e.g., Firefox or Galeon) “Download Link” or “Save
link as” that can be accessed by clicking the right mouse button on the Maxima program link. Be sure to download
all the files for a given experiment. It is recommended that you run these programs under wxMaxima (the graphical
user interface to Maxima). Use the “File → Load Package” selectin in wxMaxima to load in and execute the program.
If the program asks for a file name, you can either type in the full file name or “File → Select file”. After selecting
the file, you must press enter. Finally, when you are done with the calculations, use “File → Print” to get a hardcopy
of your work.
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D. Producing scientific plots with xmgrace program

The xmgrace program can be used to create 2-D graphs, perform mathematical operations on the data and carry
out linear and non-linear least squares fitting of data. It is only available for Linux and Macintosh systems. On
Fedora Linux it can be installed as instructed in section X A (package name: xmgrace). xmgrace is also available
in the standard Ubuntu Linux distribution. For all other systems, visit the xmgrace download page. If you use
windows, you may have to buy a commercial package. To startup xmgrace, choose “Applications → Graphics
rightarrow Grace”. To exit the program choose “File rightarrow Exit”. Since xmgrace starts up with rather
odd window size, you may want to resize windows from the frame portion with your mouse. Note that xmgrace is
only capable of producing 2-D plots. If you need to work with 3-D plots, use either qtiplot (discussed later) or OpenDX.
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FIG. 4: The main window of xmgrace showing the superfluid 4He dispersion relation.

1. Working with data files

Start by bringing up the file import dialog with “Data ← Import ← ASCII”. To select your file, double click on the
filename. If your datafile consisted of multiple columns of data, set the “Load as:” field to “NXY” in the previous
dialog. You should see your data plotted on the screen. After you are done importing your data, close the file import
dialog by clicking on “Cancel” button. If you you want to add another file, just repeat the procedure. By default
the new data will be displayed with a different color. The first set will be black, 2nd red, etc. Remember that in the
ASCII format the files consists of lines with X and Y pairs (separated by space or tab) per line. If you want to delete
a data set, select “Edit ← Data Sets”. You should now see the “Dataset Properties” window, which lists all the data
sets. Select the data set you wish to operate on. By selecting the data set, you will also be able to see simple statistics
for it. To eliminate a set, select it and then press the right mouse button. A menu should appear from which you can
select “kill”. You’ll note that there is a “kill” and “kill data”. The former totally eliminates everything associated
with a data set while the latter eliminates the data but keeps the settings for it so that if new data is read into the
set, it will have the same properties like colouring and line width, etc. Note that these operations remove data sets
only from the graph and not from the hardrive.

To get your data plotted on the screen correctly, you may have to use the buttons on the side panel to zoom,
autoscale, move etc. your graph: “magnifying glass” will zoom (area selected with mouse); “AS” autoscales axis
based on your data; “Arrows” will move the graph within the window.

2. Working with data sets

Each data set can be given its own style and appearance. Practically all aspects of the curves are configurable
including color, line thickness, symbols, drop lines, fills, etc. These operations are available under “Plot rightarrow
Set Appearance” menu (or by double clicking on one of the data sets within the graph frame). When the new window
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comes up, you will see a list of the sets with their name (e.g., G0.S1 refers to set 1 in graph 0). Sometimes operations
will require you to know the data set name. For example, if you want to change the color of one of the sets, select the
set from the list, set its color from the “Color” menu within the window (click on it the part showing the current color)
and click on “Apply” button. Note that “Apply” and “Accept” have almost the same function with the exception that
“Accept” also closes the window. The “Close” button closes the window without changing anything. You should now
see the new color on your graph. There are many other style options that you can change: line style and thickness,
symbols for the data points, etc. Note that there are more options available in the subwindows “Main”, “Symbols”,
“Line”, “Ann. values” and “Error bars”.

When you have several lines in your graph, it makes sense to label them with a legend so that we can figure out what
they mean. The first thing to do is to give each set a label. This is done by first choosing “Plot → Set appearance”
menu item, selecting the desired data set and typing the legend text in the “String:” section under “Legend”. Finally,
click on “Apply”. This will automatically turn on the legend display, which can otherwise turned on or off in the
“Plot → Graph Appearance” menu (checkbox under “Display options”). More options for the legend box shown in
the graph can be found from the same window under the “Leg. Box” and “Legends” subwindows. To change the
position of the legend box, yous the “X:” and “Y:” coordinate settings shown in the previously mentioned window.

When you are done with preparing your graph, you can save it by “File → Save as” menu selection. This saves all
the graph settings, including the data sets. If you want to make a printout, choose “File → Print”. Note that you
can also print to a file which allows you to include your graphs in other documents.

3. Creating data sets within xmgrace

Besides reading in data files, xmgrace has an extensive scripting language with a large number of math functions
built in. These functions include the basic add, multiply, square root, etc. and also advanced functions like the Bessel
and gamma functions. See the user guide for more details. In addition, users can add points to data sets manually
via the spreadsheet window. Most of the functions can be accessed by first choosing “Edit rightarrow Data sets”. To
create a set, press the right mouse button anywhere within the data set list (which may be empty) and select “Create
new” from the pop up menu. Data can be entered in four different ways: “By formula” (i.e., create a new data set
that is represented by a given function), “In spreadsheet” (i.e., enter the individual data points using a spreadsheet),
“In text editor” or “From block data”. The first two are most commonly used. Note that if you use “In text editor”,
you will probably have to know how to use the VI text editor.

If you choose “By formula” then a pop up window appears where the following settings must be made:

1. The first step is to set up the parameter mesh which will determine the range and sampling of the variable $t.
Most often, $t will simply be the abscissa.

2. Choose the type of set you would like to produce.

3. Using the syntax of the command language, an expression for x is entered which uses $t as the independent
variable. This can be any function.

4. Likewise, an expression for y is entered and for any other expressions that may be needed. Fields after y are
labelled y1, y2, y3 and y4. For example, if the set type xydxdy is chosen, y1 will hold dx and y2 will hold dy
and it will be necessary to enter expressions for them.

5. Pressing apply or accept will perform the calculations and create the new set. You may have to autoscale to see
the new set.

Examples:

1. To plot one cycle of a sine wave: Load: Set x, Start load at: 0, Stop load at: 2*pi, Length: 100, x=$t, y=sin($t)
2. A unit circle by parameterization: Start at:0, Stop at: 2*pi, Length: 100, x=cos($t), y=sin($t)

If you choose “In spreadsheet”, this choice brings up a spreadsheet like data editor that allows one to enter the
points of the set by hand. Initially, it just has the point (0, 0). Clicking on add will insert a copy of the currently
selected row immediately below the selected row. Clicking delete will delete the row which contains the cursor. This
method is best suited to examining or modifying existing sets or creating very small sets. The sets gets updated after
one hits enter or leaves the cell.

Finally, remember that you can always create your data sets with a text editor and use the previously mentioned
ASCII import function to read the data set in.
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4. Graph axes and titles

Axis properties can be set by selecting the “Plot → Axis properties...” (or by double clicking on the graph frame).
All aspects of the axes can be changed like the title, the font, color, whether or not to draw grid lines, or user defined
tick marks and labels. The most important settings in the axis properties window are: “Edit” which specifies which
axis (i.e.,. x or y) is to be modified; “Start” which specifies the start numerical value for the axis; “Stop:” is where the
axis ends; and “Label string” which is the axis label (i.e., label and unit). Note that there are more options available
in the subwindows “Main”, “Axis lable % bar”, “Tick Labels”, “Tick Marks” and “Special”. Again, when done with
the settings, press either “Apply” or “Accept”. The best way to learn the effect of each option is to experiment with
them. Note also that the attributes regarding the axis labels like size, colour, font, position are also changeable.

To change the graph title, choose “Plot → Graph Appearance” menu item (or by double clicking above the graph
frame). This will bring up a new window that has the generic settings for your graph. The sections with “Title:”
and “Subtitle:” can be used to give your graph a title, which will be displayed at the top portion of the graph. After
changing settings in this window, the changes must be accepted by pressing either “Apply” or “Accept”. Note that
more subwindows are available: “Main”, “Titles”, “Frame”, “Leg. box”, “Legends” and “Special”. The “Viewport”
settings shown define the four corners of your graph. Other things which can be controlled in this window are the
frame drawn around the graph, whether or not the graph background is colored and the legends.

Note that it is also possible to place multiple graphs in a single display (including overlays) but these topics are
beyond this document. You can read more about this in the user guide.

5. Fitting data (linear regression)

In linear regression (i.e., linear least squares fit) parameteres appearing in a linear function (or some non-linear
equation that can be recast into linear) are optimized (see section VIIIA) in such way that the best match between the
“experimental data” and the model is obtained. To fit data you must first read in your data set (“experimental data”)
and choose “Data rightarrow Regression” menu item. In the “Regression” window, first choose your “experimental
data” set from the list of data sets, select the type of fit required (“Type of fit:” with linear, polynomial, exponential
etc. models) and finally click on “Accept” to perform the fit. A new data set corresponding to the fit will be create in
the graph and “Grace: Console” window will show the details of the fit. The most important numbers in the output
are: Regression coefficient (SLOPE) which is the slope, Standard error of coefficient which is the standard error in
the slope, Regression constant (INTERCEPT) which the intercept point and Standard error of constant which gives
the standard error for the intercept. The resulting equation is also shown at the end of the output (may be useful
to look at when performing other than linear functions). Note that the “Restrictions:” setting can be used to allow
only partial fit of your data. Remember that fitting with high degree polynomials may lead to unpleasant surprises:
the fit matches your points exactly but between the points there may be wild oscillations in the polynomial.

6. Fitting data (non-linear regression)

To perform non-linear regression (i.e., non-linear least squares fit) choose “Data rightarrow non-linear curve fitting”
menu item. The “Non-linear curve fitting” menu appears where the “experimental data” set must be defined from
the list on the left (“source side”). Be sure not to select anything in the right (“destination side”), otherwise you may
overwrite your data with the fitted function. Next enter the function that you wish to fit to your data (“Formula:”).
The function variables x and y refer to the x-axis value and the function value, respectively. Parameters are expressed
as A0, A1, etc. depending how many are included in the model. The number of these parameters to be fitted can
be selected from the “Parameters:” selection where the default shows 0. After setting the number of parameters,
you will see the list of parameters below. This table indicates the current value for each parameter and possible
bounds enforced on them. To use bounds, use the “Bounds:” checkbox and enter the lower and upper limits for the
parameter. There are two other important settings in this window: “Tolerance:” which states the desired accuracy
for the non-linear process and “Iterations” which defines the number of iterations to run. Both of these settings may
affect the accuracy of your fit so be sure to “play with them” before accepting your fit. Note that you can also fit part
of your data or introduce weight factors for your data points in the “Advanced” subwindow tab (“Restriction:” and
“Weights”) In the same window you can also instruct xmgrace to load the full fitted function instead of it just being
evaluated at the points corresponding to your experimental data. The fitting process can be activated by clicking
on “Apply”. A new data set will be added to your graph that corresponds to your fitted function. Provided that
this looks reasonable, you may hit “Apply” few more times to make sure that the fit has converged. Since non-linear
regression is based on the general methods of optimization, the following problems may occur: trapping in local
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minima and some times numerical instabilities cause convergence failure. To avoid the local minimum problem, the
initial values for the parameters should be set initially as close as possible to the their optimal values. Finally, note
that this procedure does not give you any error estimates. Error estimates in non-linear regression is a tricky issue
and often rather crude approximations has to be made before these can be otained. If you need error estimates for
non-linear regression, you must use either the nlsq.mac maxima program that is available on the course web page or
the qtiplot program.

7. Transformations

The following menu items can be found from the “Data → Transformations” menu:

Evaluate expression: This function allows you to modify your data according to some given function. For example, if
you would like to remove a baseline from your UV/VIS spectrum, you could execute repeatedly a function y = y−0.1
on it. If executed once, it will remove the constant 0.1 from your y-axis data. Similarly, you could shift a spectrum
by x = x − 0.05, for example. This would subtract 0.5 from all of your x-data points (i.e., move the spectrum to the
left). Scaling along y-axis can be done with y = y ∗ 1.1, which would multiply all y values by a factor of 1.1. To use
this in practice, you must first select your source set from the list of sets on the left (i.e., this data will be operated
on) and the destination for the new data on the right. Note that if you don’t select a destination on the right panel,
a new data set will be created. If you are modifying a spectrum (the previous examples), this is something you
don’t want. In those examples you should have both source and destination point to the same set. Enter your for-
mula in the box below “Formula:” and finally press “Apply”. If you want to repeat the operation press “Apply” again.

Fourier transforms: This will perform discrete Fourier transform of your data. See the xmgrace manual for more
details.
Histograms: This will bin your data, thus producing a histogram. Select the source and destination data sets, give
start (“Start at:”), end (“Stop at:”) and the number of bins (“# of bins”) corresponding to your histogram and finally
hit “Apply”. You may want to leave the destination undefined to avoid overwriting your original data set. If you
want to use the autoscale button “AS”, you probably want to delete the original data to force the autoscaling to act
on the histogram.
Differences: This will carry out numerical differentiation of your data by using the finite difference approximation.
Integration: This will carry out numerical integration of your data.
Interpolation: Fit a local polynomial to your data. This is useful in producing smooth curves that go through your
data.

8. Drawing objects and special symbols

Simple drawing tools are available in the “Window → Drawing objects” (e.g. lines, arrows, ellipses, text). In text
objects, including titles and legends, the following special sequences can be used:

• Superscript text: \Stext\N
• Subscript text: \stext\N
• Greek font for text: \xtext\0

After changing a text object you must click “Apply” to update the graph.

XI. CREATING GRAPHS AND FITTING DATA WITH QTIPLOT

qitplot can be used to manipulate, analyze, and plot scientific data. It is available from
http://soft.proindependent.com/qtiplot.html. It is available for Linux, Macintosh, and Windows plat-
forms. The Linux version is available for free whereas the Macintosh and Windows versions must be
purchased (limited demonstration versions are available for free). The user manual is available online at
http://soft.proindependent.com/doc/manual-en/index.html. On Fedora Linux systems, qtiplot is available for
installation from the standard package manager application. The most common tasks using qtiplot are demonstrated
below. The data in qtiplot is stored in tables, which are similar to spreadsheets. Selections for loading and saving
qtiplot projects as well as quitting the program can be found from the File menu.
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A. Importing ASCII data

To import ASCII data, select “File → Import → Import ASCII...” or simply press ctrl-K. The file import dialog
shows up where you can select the file to be imported as well as the file format. The file format settings are available
behind the “<< Advanced” button. The fields should be self-explanatory. The most important fields are: Separator
(the character(s) separating the numbers on each line), Ignore first (how many lines from the beginning of the file to
ignore), Ignore lines beginning with (skip the lines with this character at the beginning), Endline Character (the line
end character, which might vary between Linux, Mac, Windows). Some fields have additional help available if you
move the mouse over them. You can see the preview of the import process at the bottom of the window. Make sure
that you see the right number of columns that corresponds to your ASCII file. Once you are happy with the settings,
click the “Open” button. After this you should see a new table with your data in it. Unwanted tables can be deleted
by clicking on the cross at the upper right hand corner of the table.

B. Manipulating tables

Here are some of the most common operations that we need to do on table data. Before the operation, the
corresponding column must usually be selected by clicking on the top part of the column with the mouse. When the
column is successfully selected, it becomes highlighted.

• Modify the values. To modify the values according to some given function, choose “Table → Set column values...”.
Most fields in the following dialog are self-explanatory. The formula describing the change should be input in
the large white box at the bottom of the dialog. Above the input box you see the column that you are about
to modify (e.g., col(”1”) for column number 1, etc.). For example, if you want to multiply all the values by −1,
you shoud enter there −col(”2”), assuming that you are working on column number 2. Click on “Apply” and
“Close” after done. See the online manual for a list of the supported mathematical functions.

• Adding columns and rows. To add columns to the table, choose “Table → Columns...” and enter the new
number of of columns. Similarily, to add more rows, choose “Table → Rows...” and enter the new number of
rows. If you don’t know how many you will need exactly, just make it large enough. To move data down by a
given number of rows, you will need to first cut the data (ctrl-X), move the mouse down by the number of rows
needed, and paste the data there (ctrl-V).

• Copying data from one table to another. First select the data to be copied. Note that all the members of a
column can be selected by clicking above the column. If you want to add more to the selection, hold down the
ctrl-key when clicking. Press ctrl-C to copy the cells, click in the new table where the data needs to go, and
press ctrl-V to paste the data there.

• To clear data. To clear a table, select the table to be cleared and use “Table → Clear” (or press Delete from
the keyboard).

C. Plotting data

To plot your data, select the Y axis column from your table by clicking at the top of the column. The column should
now be selected (blue). Choose either “Plot → Line” or “Plot → Scatter” for line and scatter plots, respectively. You
will now see the plot on the screen. The graphs can be modified by double clicking on the specific part of the graph.
For example, if you want to modify the X-axis, double click on it. To modify line stye, click on the line representing
the function, etc. Editing the legend is a bit more complicated. There \l(1) represents, for example, the line style
identifier for the curve and %(1) represents the table name. Most often you would like to leave \l(1) there and after
that write the name of the curve there. Graphs can be removed from the project by clicking on the cross at the upper
right hand corner of the graph. Note that qtiplot also supports more complicated plots such as pie charts, contour
and 3D plots.

D. Fitting data

First select the Y-axis column of the data that you want to fit. Then choose “Analysis → Fit Wizard...” to proceed
to the data fitting module. Note that if your data is linear, polynomial etc., there are preset menu selections in the
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Analysis menu for there and there is no need to use the Fit Wizard. If you get a file dialog requesting “Choose
the plugin folder”, just click on the “Cancel” button. The top part of the dialog contains some predefined functions
(Category: Built-in), list of basic mathematical functions (Category: Basic), and your own saved functions (Category:
User defined), which will be used if the “Fit using built-in function” is checked. If you want to enter your own function,
it shold be input in the large text box at the bottom of the dialog. You can save your own function to the User defined
list by first defining the function and then clicking on the “Save” button. For example, to fit a straight line, use k*x+b.
Symbol x is reserved for the X column of your data whereas all other symbols that appear will be included in the
least squares optimization. To proceed, click on “Fit >>”. In the middle of the fitting dialog, you will see the initial
guesses for the variables that will be optimized. It is important to give reasonable initial guesses or otherwise the
(non-linear) least squares process may fail. You can change the values by clicking on them and entering the new
value there. You can also set constraints on the values the variables may take by clicking on the ↔ button on the
left. Use the check boxes to activate lower and upper limits and remember to enter the values there as well. Click on
the ↔ button to go back to the initial guess view. Information on the rest of the parameters can be found from the
manual and most often we don’t need to modify them. To fit the data, click on “Fit”. The fitted function will now
appear in your graph along with your data. Make sure that the fit is appropriate (i.e., the r2 value close to one). The
Results.log window at the top will give you the final values for the variables as well as their statistical errors. The
r2 value can also be found there. Note that you may have to scroll the Results.log window up to see there. If you
want to run the fitting process again, you may want to remove the old fit from the graph by clicking on “Delete Fit
Curves”. Once you are done, click on the “Close” button. You can print out your results by choosing “File → Print”

E. Reading data points from graphs

To read numerical values for data points in a graph, use “Data → Data Reader”. The mouse cursor will show both
X and Y values as you move the mouse over the graph.

F. Data manipulation

Operations such as differentiation, integration, Fourier transformation, are available under the “Analysis” menu.
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