CHEM 352: Homework for chapter 2.

1. The quantum mechanical state of a hydrogen atom is described by the following superposition:

$$\psi = \frac{1}{\sqrt{14}} \left(2\psi_{1,0,0} - 3\psi_{2,0,0} - \psi_{3,2,2} \right)$$

where $\psi_{n,l,m}$ are eigenfunctions of the Hamiltonian. The subscripts refer to quantum numbers n, l, m.

- (a) What is the probability of finding the hydrogen atom in states (n = 1, l = 0, m = 0), (n = 2, l = 0, m = 0), (n = 3, l = 2, m = 2) or in some other state?
- (b) What are the expectation values for energy, $\vec{\hat{L}}^2$ and \hat{L}_z ?
- 2. Show that operators \hat{L}_z and $\vec{\hat{L}}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$ commute with the hydrogen atom Hamiltonian operator:

$$\left[-\frac{\hbar^2}{2m}\Delta + \hat{V}, \hat{L}_z\right] = \left[-\frac{\hbar^2}{2m}\Delta + \hat{V}, \vec{\hat{L}}^2\right] = 0$$

where \hat{V} is the operator corresponding to electron - nuclear Coulomb interaction. Use spherical coordinates and remember that operators commute, for example, if they depend on different variables. What is the significance of this result?

- 3. Demonstrate that the Cartesian hydrogen like p_x and p_y orbitals are not eigenfunctions of \hat{L}_z but their linear combinations $p_x \pm ip_y$ are.
- 4. (a) Consider a hydrogenlike atom with on electron on 2s orbital. What is the most probable distance from the nucleus? Use the radial wavefunction in your calculation.
 - (b) Show that the following hydrogenlike atom orbital pairs are orthogonal: (1s, 2s) and $(2p_x, 2p_y)$.
- 5. (a) Write the electron configuration for V^{2+} ion. What quantum numbers for the total electron spin are possible in this configuration?

- (b) If two electrons reside on two different orbitals, what are the possible values for total spin and the multiplicity? What values are possible for three electrons on different orbitals?
- 6. (a) What information do the following term symbols provide about a given atom: ${}^{1}D_{2}$ and ${}^{3}F_{4}$?
 - (b) Consider the emission spectrum of potassium atom, which exhibits lines at $\lambda_1 = 766.70$ nm and $\lambda_2 = 770.11$ nm. What is the value of the spin-orbit coupling constant? The emission lines originate from the ²P excited state (spin-orbit split).
 - (c) Which of the following atomic transitions are (dipole) allowed: $5d \rightarrow 2s, 5p \rightarrow 3s, 5p \rightarrow 3f$?
- 7. (a) Write all the term symbols that can be obtained from the following electron configurations: $2s^12p^1$, $2p^13d^1$ and $\operatorname{Ar4} s^23d^{10}4p^5$ (Br atom).
 - (b) Write the term symbols for carbon atom (He $2s^22p^2$), which has two equivalent *p*-electrons. Hint: tabulate all possible $m_{l_1}, m_{l_2}, m_{s_1}$ and m_{s_2} values and calculate the total *L* and *S* values. Remember to exculde the Pauli forbidden states.