CHEM 352: Homework for chapter 5.

1.

- a) The molar absorption coefficient of a substance dissolved in hexane is $\epsilon = 855 \text{ L mol}^{-1} \text{ cm}^{-1}$ at $\lambda = 270 \text{ nm}$. Calculate the intensity reduction in percentage when light passes through a 2.5 mm thick film of 3.25 mmol/L solution.
- b) Consider a 10 mmol/L solution of benzene in a non-absorbing solvent. The solution was placed in a 2.0 mm thick cuvette and the transmission of 256 nm light through the sample was observed to be 48 %. What is the molar absorption coefficient of benzene at 256 nm? What would be the transmittance when using a 4.0 mm thick cuvette at the same wavelength?

2. Compare the ratio A/B between the Einstein spotaneous and stimulated emission coefficients for the following wavelengths: a) $\lambda = 70.8$ pm (X-ray), b) $\lambda = 500$ nm (visible light), c) $\tilde{\nu} = 3000$ cm⁻¹ (IR), d) $\lambda = 3$ cm (microwaves), e) $\nu = 500$ MHz (radiowaves). What does this tell you about the significance of the spontaneous emission at different energies?

3.

- a) Calculate the relative Doppler broadening for gaseous ICl molecules at 25 °C. What are the linewidths $\delta \nu_{rot}$ (kHz) and $\delta \nu_{vib}$ (cm⁻¹) when the rotational constant B = 0.1142 cm⁻¹ and the vibrational frequency is $\nu = 384$ cm⁻¹.
- b) If the excited state has a lifetime of 100 ps, what is the lifetime broadening caused by this?

4. The rotational spectrum of $^{127}I^{35}Cl$ shows lines with 0.2284 cm⁻¹ spacings. What is the bond length of this molecule?

5. Consider NH₃ molecule (non-planar geometry; symmetric top).

a) What are the positions of the four first Stokes and anti-Stokes rotational Raman lines when the excitation laser wavelength is 336.732 nm and the rotational constant B = 9.977 cm⁻¹ (note that you do not need the

rotational constant A in this calculation since the selection rule include $\Delta K = 0$).

b) Demonstrate that the above rotational constant is consistent with N-H bondlength of 101.2 pm and bond angle 106.7°.

6. The dissociation energy (D_0) of H₂ is 4.46 eV with the zero-point energy being 0.26 eV. What is the value of D_0 for D₂ molecule?

7. IR measurement of gaseous HCl sample yields the following Morse potential constants: $\tilde{\nu}_e = 2990.1 \text{ cm}^{-1}$ and $x_e = 0.01737$. What is the dissociation energy D_0 ? How does this compare with the known dissociation energy of HCl?

8. How many rotational and vibrational degrees of freedom do the following molecules have: CH_2O , C_2H_2 , and C_6H_6 ?

9. Which of the following molecular vibrations of benzene are IR or Raman active?

- a) Vibrational mode where the aromatic ring expands and contracts (i.e., all C-C bonds elongate or contract together).
- b) Evey other hydrogen moves below the molecular plane with the others going in the opposite direction (below the plane).