CHEM 352: Examples for chapter 1.
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1. The ground state wavefunction for a hydrogen atom is ¢y (r) = _e "/,
7ra0

(a) What is the probability for finding the electron within radius of
ag from the nucleus?

(b) Two excited states of hydrogen atom are given by the following
wavefunctions:

T

U (r) = A2+ Ar)e_ﬁ and 1o(r) = Brsin(f) cos(p)e 20

Proceed in the following order: 1) obtain A from the orthogo-
nality requirement between 1y and 1, 2) use the normalization
requirement sepratately for 1 and 5 to get constants A and B,
respectively.

Solution:

(a) The probability P for finding the electron within ay (a ball with
radius ag; denoted by V' below) is:

ag
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P = /wglpodr = 7r_a‘8 /6_27'/"0 4rr?dr,
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Note that the 47 in the volume element above comes from the
fact that the function in the integral does not depend on the an-
gles # and ¢ and therefore the angular part can be integrated
independently to yield 47 (i.e. the original volume element dr =
r? sin(0)dfdpdr is then effectively just 4wr2dr). Above we have

used the following result from a tablebook:
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This was applied in the following form:
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(b) First recall the wavefunctions:
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U1 (1,0,0) = A2 4 Ar)e /2% ahy(r. 0, ¢) = Bsin(0) cos(¢p)re "/ (0

First we calculate A\ from the orthogonality:
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Then determine A from the normalization condition:
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B can also be determined from normalization:
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Above we have used the following integrals (tablebook):
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2.

(a)

(a) Which of the following functions are eigenfunctions of d/dx and
d*/dz?*: exp(ikz), cos(kz), k, and exp(az?).

(b) Show that the function f(z,y,z) = cos(ax)cos(by) cos(cz) is an
eigenfunction of the Laplacian operator (A) and calculate the cor-
responding eigenvalue.

(c) Calculate the standard deviation Ar for the ground state of hy-
drogen atom (7).

(d) Calculate the expectation value for potential energy (V(r) = — 4::0r)
in hydrogen atom ground state ¢(r). Express the result finally
in the units of eV.

Solution:

. d(i;jx) = ike’*® = “constant x original function”. Thus this is
an eigenfunction of the given operator.

. di(;;m = L (ike'**) = —k%e™™® = “constantxoriginal function”.
Thus this is an eigenfunction of the given operator.

° % = d;g;) = 0. This could be considered as en eigenfunction
with zero eigenvalue.

az2
° % = 2axe™™’ # “constant x original function”, thus not

an eigenfunction.
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(2022 +1)e™” # “constant X original
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function”, thus not an eigenfunction.
. W = —ksin(kx). Not an eigenfunction.



d%gjg’“‘”)) — dCkein(ke) — k2 cos(ka). This is an eigenfunc-

tion (with eigenvalue —k?).

(b) f(z,y,2) = cos(ax) cos(by) cos(cz). The partial derivatives are:

W = —asin(ax) cos(by) cos(cz)
%’y‘y’z) = —bcos(ax) sin(by) cos(cz)
M = ¢ COS(CLCL’) COS(by) SiIl(CZ>
0z
and )
W = —a”cos(ax) cos(by) cos(cz)
%y;y,@ = —b? cos(ax) cos(by) cos(cz)
% = —c? cos(ax) cos(by) cos(cz)

Therefore Af(z,y,z) = —(a® + b* + ) f(z,y,2) = “constant x
original function” and this is an eigenfunction with the corre-
sponding eigenvalue —(a? + b* + ¢?).

(c¢) The standard deviation can be calculated as:
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(d) The potential energy expectation can be calculated as:
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3. Consider function 9 (z) = (£) * e~’/2_ Using (only) this function,
show that:

(a) Operators & and p, do not commute.

(b) Operators #2 and the inversion operator I commute (I = —x).

Note that consideration of just one function does not prove a given
property in general.

Solution:

(a)
Y(x) = (E>_1/4 eow*/?

«
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To obtain the commutator, we need to operate with & and p,:
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When these are subtracted, we get:
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(&pe) ¥(x) — (Pa) ¥ (x) = 1R (3>_” ! a2

«

When the wavefunction v (z) is removed, we have:

A A

[T, D] = ih

Because the commutator between these operators is non-zero, it
means that they are complementary.

(b) The commutator for the given function is:
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= % and I commute for the given function.

4. A particle is described by the following wavefunction: ¥ (x) = cos(x)@r(x)
+ sin(x)¢_r(x) where x is a parameter (constant) and ¢ and ¢_j are
orthonormalized eigenfunctions of the momentum operator with the
eigenvalues +hk and —hk, respectively.

(a) What is the probability that a measurement gives +hk as the
momentum of the particle?

(b) What is the probability that a measurement gives —hk as the
momentum of the particle?

(c) What wavefunction would correspond to 0.90 probability for a
momentum of +hk?

(d) Consider another system, for which ¢ = 0.9¢; + 0.495 + c393.
Calculate c3 when 11, 15 and 3 are orthonormal. Use the nor-
malization condition for ).

Solution:



(a) The probability for measuring +%k is cos*(x). We have a su-
perposition of the eigenfunctions of momentum and therefore the
squares of the coefficients for each eigenfunction give the corre-
sponding probability.

(b) The probability for measuring —hk is sin?(x).

(c) Given cos?(x) = 0.90 (hence cos(y) = 40.95) we use the nor-
malization condition cos?(y) + sin’(x) = 1 where we solve for

sin(x) = £0.32. The overall sign for the wavefunction does not

matter and therefore we have two possibilities for our wavefunc-
tion: 1) = 0.95e*** + (.32¢ =,

(d) Normalization condition: 1 = (0.9)*+(0.4)?4c3. Thus ¢z = £0.17.

5. Consider a particle in the following one-dimensional infinitely deep box

potential:
h <
Vi) = 0, when |z|<a
oo, when |z| >a

Note that the position of the potential was chosen differently than in
the lectures. The following two wavefunctions are eigenfunctions of the
Hamiltonian corresponding to this potential:

U (z) = % cos (%) and 1y(x) = % sin <%>

with the associated eigenvalues are E; = 1 eV and Ey; = 4 eV. Define
a superposition state ¢ as ¢ = \% (1 + 1a).

(a) What is the average energy of the above superposition state (e.g.
< H >)?

(b) Plot ¢ and v and determine the most probable positions for a
particle in these states.

(¢) What are the most probable positions for the particle given by
wavefunction ¢3(x) = \/% sin (?me) where the box potential is

now located between [0, L].

Solution:



(a) We calculate the expectation value (Hiyy = By and Hipy =
Eathy):

(i) = [ v @i
_ %/(¢;(x)+¢§(x))ﬁ(¢l(x) + by (x)) dx

N %/(10;@) + 15 (x)) (Evn () + Exta(w)) de = % (E1 + E»)
=25¢eV

(b) For a = 1 both ¢;(x) (one maximum) and ¥, (z) (maximum and
minimum) are shown below:

The most probable values for position can be obtained from the
squared wavefunctions:

0.5 1

11 has the maximum value at x = 0 whereas 1), has two maxima at
+0.5. Note that on average both will give an outcome of (z) = 0.

(¢) The most probable positions are given by the square of the wave-
function 1o(z) = (2/L)"*sin(37z/L). The probability function



is then [¢(z)]® o sin®(3mz/L). The extremum points for this
function can be obtained by:

° (sin*(3mx/L)) = 0 = sin(3mz/L) cos(3mx/L) = 0

dx
:>37r:c_ 37Tx_ +1
7 = nm or 7 n 5 T
n n+1/2
=xr=—-L = L
x 3 or T 3

Second derivatives can be used to identify the extrema:

2, o ((3mx o (37
12 (sin®(37z/L)) o cos (T) — sin (T)

At z = 3L the values are positive which means that these cor-
respond to (local) minima. For z = ”+31 2], the values are nega-
tive and these points correspond to (local) maxima. For example,

when L = 2 the probability function looks like:

6. Calculate the uncertainty product ApAxz for the following wavefunc-
tions:

(a) Yn(z) = (%)1/2 sin (“22) with 0 < 2 < L (particle in a box)

(b) ¥, (z) = N,H, (y/ax)exp <—O‘T’EQ> (harmonic oscillator)

Solution:
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(a) For momentum:

2 nmwT

1/2
Un(x) = (—) sin (T) . where 0 <z < L

L
(52 / 2 1/25' (mr:v) - d 2 1/2s' (mrx) J
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Now we can calculate Ap = /(p2) — (p,)* = 2k - For position
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we have:

Vv
_ L3(4n272-6)
2472n2

Now A = /(67) — (0 = /5 (1 52) ~ & =Ly /3y — b

Since we have both Az and Ap, we can evaluate the uncertainty
product:

n’t? 6
12 12
The smallest value is obtained with n = 1: ApAx ~ 0.568 xh > %
(b) First recall that:

ApAz = h

—ax? 1 (6% 1/4
() = NoH, (Vaw) e/, where N, = m(?)

Also the following relations for Hermite polynomials are used (lec-
ture notes & tablebook):

H’U+1 = 2yH —2vH,
0 if v £
y _ Y
/ Hu yle ™V dy = {ﬁQ”v!, ifv="1
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Denote y = y/ax and hence dy = \/adz. Now () is given by:

(8) = N2 [ H (V) et (V) e

Ng _ 2/2 _ 2/2

= o Hv(y)e Y va(y)e vty
N2 .

=— H,(y)y H,(y)e ™ dy =0
« N——

=00 =1Hy1(y)+vHy-1(y)

The last two steps involved using the recursion relation for Her-
mite polynomials as well as their orthogonality property. Next we
calculate (2%):

o N2 T ) e
<:E > = 3/2 (va(y)) e Vdy

—00

N2 T (1 :
:agq/jg / (§Hv+1(y)+vﬂv—1(y)) eV dy

—0o0

N2 [(2v+1(y + 1)
— \/an ( 1

:%((vHHv):é(H%) :%Q’%)

Combining the above calculations gives Ax = , / (U + %) % Next

we calculate Ap:

+v?2" (v — 1)!)

p= —ihi and dy = adz.
dx

@)= [ N0 (N e ) dy

d

— =it [ Hu(e P (Hue ) dy
X
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Above differentiation of the eigenfunction changes parity and there-
fore the overall parity of the integrand is odd. Integral of odd
function is zero and thus (p) = 0. For (p*) we have:

i d
) = [ Mo N i )

The operator must also be transformed from x to y: p* = (—ihd/dx)?
= (—ihy/ad/dr)?). The above becomes now:

«

r 2 2oy dy
—y2/2 [ _#2 -y?/2
/NUHU(y)e ( h ady2> (NUHU(y)e ) =

r P2 )
2 2 —y2/2 —y2/2
= —h*VaN; /Hy(y)e v/ d_y2 (Hv(y)e v/ )dy

'

=—2vH,(y)

— _R/aN? / Hy(y) |57 — 1) H(y) —29H.(y) + H!(y) | e 7 dy

—-VaN? [ ) [0~ DH.) - 20H, ()] e dy

R /an? (_21;_1)/H3(y)6_y2dy+/ y H(y) eV dy
2
too - :(%HU+1(y)+UHU—1(y))

~
| =/m2?v! .

1
= —h2VaN? |(—2v — 1)y/m2%! + Zﬁ2v+1(v + D) 40?720 v — 1)!}

1 1
= h*VaN?2/T2%! {21}4— 1— U; — E] = ha {v—i— —]

2 2
1
= hvmk {v—i— 5]

14



Therefore we have Ap = \/ hv'mk [v + %] Overall we then have

Aadp =\ [(v+3) Fy/mvmk [v+ 3] = o+ 1) = &

7. Scanning tunneling microscopy (STM) is a technique for visualizing
samples at atomic resolution. It is based on tunneling of electron
through the vacuum space between the STM tip and the sample. The
tunneling current (I oc |¢|> where 1) is the electron wavefunction) is
very sensitive to the distance between the tip and the sample. Assume
that the wavefunction for electron tunneling through the vacuum is

given by ¥(x) = Bexp X with K = \/Qme(V —E)/h*and V — F =
2.0 eV. What would be the relative change in the tunneling current [/

when the STM tip is moved from x; = 0.50 nm to x5 = 0.60 nm from
the sample (e.g. I1/Is = 7).

Solution:

The current is proportional to the square the wavefunction (| (z)[?):

1o [i(a)|* = B *
I
_1 — 672K(x1fa:2)
I
1/2
K= |2m.(V—E)/n
N——

=2eV

(20911 x 1073 kg) (2.0 eV)(1.602 x 10719T feV) |/
B (1.0546 x 1034 Js)2
—2K (7] — 29) = —2K x (0.10 x 107" m) ~ 1.45

I
— ~4.3
I

8. Show that the sperhical harmonic functions a) Yy, b) Yo 1 and ¢) Y33
are eigenfunctions of the (three-dimensional) rigid rotor Hamiltonian.
What are the rotation energies and angular momenta in each case?
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2
Hip(r,0,¢) = Ep(r, 0, ¢) where H = LI e

21
1 o 1 0 0
A? = — sin(0)—
5n20) 002 sin() 90 "9 59
Since —;‘—j is constant, it is sufficient to show that spherical harmonics

are eigenfunctions of A%2. We operate on the given spherical harmonics
by AZ.
(a) A%YQ(0,¢) = AQ#E = 0 (no angular dependency). The rotation
energyisE:—g—ij:O. Also L? = 0 x h* = L = 0 (since
L? = —h’A?).
(b) A?Y;1(0,¢) = ..differentiation... = —6Y; *(#,¢). The rotation
energy is F = —Z—j x (—6) = % Also L? = 6 x h* = L = \/6h.

(c) Expression for Y3¥ was not given in the lecture notes. We use Max-

ima to obtain the expression: Y3(6,¢) = %\)51:‘3)(9). Then we
need to evaluate: A*Y3 (6, ¢) = ...differentiation... = —12Y3(6, ¢).

From this we can get the rotational energy as F = #. Also
[?=12x h* = L =+12h

. Calculate the z-component of angular momentum and the rotational
kinetic energy in planar (e.g. 2-dimensional; rotation in xy-plane) rota-
tion for the following wavefunctions (¢ is the rotation angle with values
between [0, 27|):

Solution:
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The Hamiltonian for 2-D rotation is H = g—; = Zj d; where the

rotation axis is denoted by z and ¢ is the angle of rotation.

(a) Operate first by L. on €/®: L.e = —ihd%eid’ = he'®. Thus He'® =

h? giep
7€

(b) The same reasoning gives: L.e %% = —iljge " = —2he”**% and
He 29 — 402 ,—2ip

21

(¢) The given wavefunction is not an eigenfunction of L,: L. cos(¢) =
—ih (—sin(¢)) (expectation value is zero). However, it is an eigen-

function of H: H cos(¢) = Z; d%; cos(¢) = g cos(¢).

(d) Operation by L, would change the plus sign in the middle of the
wavefunction into a minus, hence this is not an eigenfunction of
L.. Tt is an eigenfunction of H: H(COS(X) @+ sm(X) —i0) =

5 (92 eos(0)e® + (= sin(r)e ) = B (cos()e + sim)e )
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